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Abstract

Today’s video-surveillance software are often based upon
monolitic software running on PCs or embedded sys-
tems also called intelligent sensors; but, no real inter-
actions exists between elements of a network dedicated
to a video-surveillance scenario. The new framework,
named "Clovis" (which stands for ‘Composant LOgiciel
pour la VIdeo-Surveillance’ - Software Component for
Video-Surveillance) proposes, for the video-analysis world,
a new approach to develop and deploy modular software for
and in those sensors on scalable network. Through three
sample applications, we present in this article, how the un-
derlined framework can be used to easily develop software
on a stand-alone manner or using distributed computing to
enhance video-analysis.

1 Introduction

The rapidly growing computational power and communica-
tion capabilities of new surveillance sensors on the market,
open the way to brand new applications of visual surveil-
lance. The former classical centralized architecture be-
comes obsolete since the analysis of a scene can be per-
formed in those sensors. Authors of [7] review required
needs and skills by these kind of sensors. In this article, we
present the "CLOVIS" framework which is a generic plat-
form that allows rapid development of surveillance applica-
tions on a stand-alone manner or in a distributed environ-
ment through a people counting and a pedestrian detection
stand-alone applications and a multi-cameras tracking with
no overlapping application. In Section 2, we present frame-
work architecture choices and demonstrate how it can cope
with application of very different behaviours. The first ap-
plication sample is described in Section 3 through the peo-
ple counting application and Section 4 describes the second
stand-alone application. Section 5 presents an application
of tracking of people within a network of sensors. We end
this article with some concluding remarks and future devel-
opments.

2 The architecture

In this section, we present the work achieved toward the
design of CLOVIS’s framework architecture for hosting
video-surveillance software. During its design, we kept in
mind that third party surveillance algorithms can be eas-
ily integrateted as modules by using the framework APIs.
In other words, some services, such as network capabili-
ties, must be available for the application developer to allow
construction of various kinds of solutions. Figure 1 shows a
typical network of sensors that must be realisable with the
CLOVIS platform. Thus the whole system proposes a way
to assemble a lot of processing modules in a runtime envi-
ronment capable of networking interactions.

Figure 1: Wide area surveillance issue

2.1 Software issue

CLOVIS provides an Interface pattern oriented glue library
which provides services for a third party integrator. Used
as it, an application developer can use available vision al-
gorithms to create a solution, and if their features are not
efficient, he can provides his own solution by providing his
own implementation for a given Interface such as process-
ing call, image conversion and so once. Internally, as other
development frameworks, CLOVIS also provides event ori-
ented mechanisms that allow catching messages coming
from other modules in the same process. When messages
is received from another process, events are transparently
handled by the communication layer of the framework, as
classical third-party architecture.

Once all required modules of surveillance application are



selected and implemented, a binary library (compiled ap-
plication) is produced and deployed on an intelligent sen-
sor running a plugin host system which is able to dynam-
ically load (or unload) a surveillance application as shown
in 2. Moreover the host system is able to send to this library
grabbed frames and network events (which are handled in
the surveillance library through the framework APIs).
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Figure 2: Insight view of the embedded application part

The actual implementation of APIs already provides a
comfortable list of image processing functions such as fast
background subtraction module based on [18] widely used
for tracking purposes.

2.2 Network communications issue

A key issue in the network is the possible amount of
exchanged data between network’s entities. Since video
streaming is a well known problem in this kind of applica-
tion, we prefer to focus on analysis information exchanged
between sensors across the network. Video analysis pro-
duces a lot of extracted and interpreted data from the im-
age and often formatted in plain text, called meta-language,
such as the nature, the location, the size, ... As today’s rep-
resentation of meta-language is the eXtensible Markup Lan-
guage (XML), we have chosen this formalism to represent
descriptions of objects extracted from the scene analysis as
shown in 3. Commonly used in IT world for marshalling
(serialization of binary object for transportation), we can
easily couple our descriptions with a dedicated transport
protocol to exchange information between sensors.

The CLOVIS framework is constructed to allow the mar-
shalling of events containing analysis descriptions and send
these to other sensors in the network using a Remote Proce-
dure Call (RPC) like system. As transport protocol, since a
HTTP server is often available on sensors, we have chosen
Simple Object Access Protocol (SOAP), the protocol part
of the Web-Service third party architecture which is often
used in distributed computing. Thus, to use this feature, the
application developer can embed his analysis description in
a CLOVIS event (he can also embed a binary description
since base64 encoding is also supported) and "stream" data

<object>
<name>object 1</name>
<velocity>
<vector>
<c>3.0</c>
<c>45.57521</c>
</vector>
</velocity>
</object>

Figure 3: XML description of objects

to other sensors such as he sent data to other modules in the
same executable. The gSOAP implementation is used due
to his highest performance as explained in [10].

Another issue of network implementation is the way to
know the topology of the network, in other words, how
the runtime environment embedded in the sensor can know
where it must send messages to other sensors. Of course,
many systems exist to discover the network’s topology, but
to handle correctly events between detections we also need
more information like geographical location of the sensor
and so on (see 4). In our development we are based on
a augmented topology server which has a well-known ad-
dress. Once a newly active sensor registers itself to the
server, it informs adjacent sensors that they can be triggered
by this new sensor, for instance when a tracked object left
its point of view to enter in the area of another sensor.
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Figure 4: The topology server

In the registering procedure, a scheme is sent to the regis-
tered module and defines which kind of information can be
sent through the network to another registered module. By
this mechanism we can avoid overload of the network with
unwanted information and increase the overall performance
of the system.

Another important issue pointed out by [7] concerns the
security (identity, encryption...) of the transmitted informa-
tion. Since our architecture is based upon 3rd-Party archi-
tectures such as Web-Service, we can take benefit from de-
velopments of these technologies. Indeed, since SOAP is
over HTTP, the usage of SSL for instance is very easy and
in the same manner, all other web-oriented security tech-
nologies can be easily used.



3 Counting people

The goal of the counting method is to count people crossing
a region, maintaining two counters, one for each direction,
positive and negative. The positive direction is provided as
an input parameter, as are a number of detection lines. Other
parameters of the methods are the expected mean size of
people along detection lines, a sensibility threshold, as well
as other timing and luminance thresholds.

The main concept of the method is to detect moving peo-
ple on a set of detection lines, once it is possible to group
a detection on each line (depending on direction), the algo-
rithm consider that a person can be counted.

3.1 The algorithm
Detection Lines

Detection of people is done individually on each detection
line. A number of 1D processing step and one 2D process-
ing step (step 5) are performed in the following order:

1. Background estimation using a recursive filtering or by
using Gaussian mixture modeling

2. Automatic thresholding of the difference image us-
ing Otsu method [12]. Then filtering the thresholded
image by use of mathematical morphology operators
(hole filling and area filtering according to a given peo-
ple size)

3. Shadow removal, following [13]: the shadow blob are
filled and combined with a threshold on the standard
deviation of the difference images pixels

4. Split/merge of blobs according to the size. Prior
knowledge of expected people size is used to split the
blobs along the detection lines

5. Evaluate the speed of candidate

6. Perform tracking and collision detection from previous
frames

Shadows are generally correctly evaluated, except for the
case of people having a texture similar to the background
but constantly darker (which is quite rare). To perform step
4, we do not consider occlusion at time, although a more
complete method is currently being developed, accounting
for camera perspective and occlusions.

In step 5, the system needs the walking direction to incre-
ment the corresponding counter, positive or negative. The
speed of the blobs, that we name candidates, is computed
using a block-matching algorithm on 8x8 blocks on a sub-
sampled image, and only in the neighborhood of the detec-
tion lines. The reason of subsampling is to capture details

that are specific to the walking persons into the 8x8 window;
the factor thus depends on people size in the original image.
Mean candidate speed is evaluated by taking the mean of
the speeds provided by the block-matching algorithm in the
blob region.

Finally, tracking is performed in step 6, where candidates
from successive frames are matched against each other.
This permits to differentiate between distinct people. This
is accomplished by comparing the candidates of the current
frame to the ones of previous frames, in terms of spatial dis-
tance. New candidates replace old ones if the corresponding
spatial region stays inactive for a given duration (we gener-
ally use a value between [0.2,1] s.).

Combining Multiple Detection Lines

Using a single counting line is generally too much sensitive,
and over counts people. To enhance the robustness of the
detection, the system use detections from multiple counting
lines. The scheme for combining that information is to con-
sider that a person going in one direction should cross the
lines in a specific order, compatible to the estimated speed.
This is illustrated on figure 5.

N lines are used, and that correspondence (speed / cross
time) is searched in their sets of candidates. Additional cri-
teria, such as compatibility between speed and covered dis-
tance across lines, could also be used.

In practice, using 3 lines leads to more robust results than
when using a single one. Using more than 3 lines does not
improve the results quantitatively, although the processing
time is directly proportional to the number of lines.

Figure 5: View of the counting configuration



Integration within “CLOVIS”

The algorithm is developed in C++ using Multitel M Vision2
libraries which are integrated in the CLOVIS APIs and bun-
dled in one dynamic library as explained in [5] . The CLO-
VIS development methodology is used to assemble all re-
quired modules and the runtime environment is used to ex-
ecute the application. Since both source code of Multitel’s
MVision2 and Clovis are "cross-compilable”, it is possible
to plug directly the library on the Clovis runtime platform
and execute the application on both Linux or Windows OSs.

3.2 Constraints and evaluation

As said before, an estimate size of people is required to be
able to split blobs on detection line, it means that, in this
case, camera orientation must be chosen to minimize occlu-
sion possibilities. Lines setup must be also chosen to avoid
incomplete paths between lines, in other words, they must
be selected to avoid that a person can cross a first line and
avoid one of others. Typically, the ideal location of camera
is an overhead camera and lines must be selected between
two walls. An evaluation was made in some cases (shopping
center entrance and shopping center corridor). The mean er-
ror was estimated in these test at 8% for fine tuned algorithm
(adapted to the context), including false detections and non
detections.

4 Detecting pedestrians

The person detection is an indispensable function in a vi-
sual surveillance software library. This is a very challenging
issue since the detector must accommodate the wide vari-
ety of human appearances, complex backgrounds, possible
occlusions, multiple scales. Moreover, a highly desirable
feature is the algorithm capability to robustly detect people
independently from their motion. The CLOVISlibrary pro-
poses a detection module which enables to detect persons in
static images even if they are immobile. It is based on shape
recognition by silhouette statistical modeling.

4.1 Descriptors of human shapes

The human shape is captured by a set of local descriptors
based on histograms of the gradient orientation, as illus-
trated in figure 6. These descriptors have already proven
to be efficient for shape recognition tasks such as hand ges-
ture recognition [8] and more recently for human detection
[4] because of their stability. They are in particular less
sensitive to lighting conditions than intensity or color-based
methods. To increase their performance, the gradient orien-
tation histograms can also be weighted by the local gradient
magnitude.

Figure 6: Histograms of oriented gradients on two sub-
images

4.2 Learning stage

The descriptors are used as classifiers discriminating human
shapes from other objects. They are obtained by training
with a learning machine composed of two classes of objects
(“person” and “non-person”) and is fed by several positive
samples (persons images) and some negative ones extracted
from various background... A decision stump is associated
to each histogram component and classifies in a very sim-
ple manner with one split. To determine the spatial support
and the histogram components of the most discriminative
classifiers, we used the Adaboost learning algorithm which
enables to build a strong classifier from a set of weak clas-
sifiers -the decision stumps in our case - by focusing on
misclassified samples at each round of the boosting pro-
cess. The performance of Adaboost for searching out a
small number of relevant features from a large set of pos-
sible ones has been shown in various works [9] [14] and the
algorithm has been successfully applied to object recogni-
tion problems such as face detection [17].

4.3 Detection strategy

During the detection phases, the analyze window screens
the image and each position is classified person or non-
person. Several window sizes are used to take into account
potential scale variation. To speed up this process, a cas-
cade of base classifiers is implemented . The candidate sub-
images pass through a pipeline of filters and only the images
passing all these filters which are classified "person". The
key idea of a cascaded classifier is to progressively reject
sub-images at each stage of the cascade (figure 7). Thus
only a small number of feature evaluations are required on
average.

Viola and Jones [17], [16] proved that this approach
speeds up drastically the detection without decreasing the
level of performances. The detection rate of the cascade is
given by the product of results of each stage. Each stage
is trained to perform 99.9% of positive detection with only
50% of false alarm, which ensure for a cascade with 30 clas-
sifiers the following performance:
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Figure 7: Cascade of classifiers

e Rate of positive detection : 0.999%° = 97%

e Rate of false alarm : 0.5%0 = 1e — 9

4.4 Detection results

The learning database is composed of nearly 3000 posi-
tive examples. For each stage, we randomly draw 10000
negative examples among the previous stage false posi-
tive errors. The resulting cascade contains 16 stages. The
false positive rate after training is 3.10e-9 say 6 errors on
2,000,142,144 sub images tested. The figure 8 shows the
false positive rate during the training stage. We can see that
more than 98% of the sub images are rejected after only 3
stages.

------

Figure 8: False positive rate during training (stage on ab-
scissa, rate on ordinate)

Then, the detection method was tested on a new video
sequence, which was not used during the training stage (fig.
9). This sequence was acquired in similar conditions (loca-
tion and lighting) than some training sequences (half of the
training sequences comes from various images collected on
the web). This sequence contains 487 images, 2 persons are
present in this scene, where there are seen 399 times. We
obtain 14 false detections on 81,159,524 scanned positions
(the false positive rate is 1.72.10e-7). The detection rate is
94.2% (376 detections on 399). The pedestrians scale varies
from 100 to 370 pixels. The obtained detector performance
is comparable to the most recent results in human detec-
tion [4] and could be improved by coupling the detection to
tracking techniques.

&

Figure 9: Result of the classifier

5 Tracking using multiple cameras
with non-overlapping views

Wide area visual surveillance rises the problem of a dis-
tributed intelligent network of sensors. “intelligent” here is
considered as being the communication skills of relevant in-
formation between some involved sensors. One of the direct
application of this kind of network is certainly the tracking
of people using multiple cameras, with or without overlap-
ping views. In the sequel, we place ourself in the second
category of applications, and restrict the framework to sta-
tionary cameras.

Several points of different nature should be taken into
account in order to resolve this application. Firsts things
first, moving objects should be detected: this is achieved
through a background subtraction techniques of our owns
described in 5.1.1. For each of the identified moving targets,
a relevant signature should be extracted and our approach
will be explained in 5.1.2. Finally, for identification issue,
the signatures should be sent across the network, and the
method will be explained in 5.1.3.

5.1 Design
5.1.1 Intra-scene detection and tracking

One of the widest technique for detecting moving objects
is background subtraction. Models for learning the back-
ground may be extremely simple, such as pixel-wise gaus-
sian models, or more robust to cope with non-stationary
backgrounds (illumination changes, non-rigid object sub-



ject to wind, etc.) relying on kernel density estimation
techniques [6]. However, these work may be computa-
tionnaly expensive and are mainly used for segmentation
tasks. Besides the convergence and classification problems,
work has been achieved to cope with the initialization prob-
lem when foreground objects are presents during the train-
ing/initialization of the background [2].

Concerning the background initialization issue, and fol-
lowing [2], the aim is to improve the convergence of the
background model by avoiding the use of discovered mov-
ing parts. To achieve this, we convolve the frame differ-
ences by a gaussian kernel in order to have closed bound-
aries, the size of the kernel is part of the configuration and
is scene dependent. We then fill the holes and threshold the
result: we obtain a very simple motion detector for a correct
initialization.

More robust models of the background cope with non-
stationarity by means of learning techniques. Here we feed
back the background with the false alarms zones issued
from the tracker: an alarm is considered as false when it
is completely still during a certain amount of time, say 2
secs. A false alarm probability map is constructed along
with the background, and is used when classifying the pix-
els of a new incoming frame. We obtain a simple back-
ground model technique without the use of expensive mod-
els and thus suitable for embedding.

5.1.2 Signatures extraction

Once the blobs were detected, accurate identification across
the network should be achieved. In the particular case
of distributed computing, the identification should be both
compact and robust to change of views and sensor response.
One of the most used technique considers the color content
of the detected object. This is the approach taken in [3],
where three different color space are investigated to build
up color histograms. According to the authors, HLS and
Munsell color space provide comparable results for inter-
scene matching.

Several histogram metrics does exist and we use the
well-known Y2 distance for histogram comparison [15].
Our experiments show that a bi-dimensional histogram on
hue and saturation channels, using HLS with L; norm [1],
with around 15 bins for each channel, led to results that are
correct even under partial occlusions.

In order to increase the accuracy, we use a new method
derived from this one: we further segment the blob detected
into N regions - N being small - using a hierarchical fusion
of region as explained in [11]. First, the watershed trans-
forms leads to an adjacency graph, on which the minimum
spanning tree is computed. A new graph is built by merging
the closest nodes and in order to have N nodes.

Each nodes of the newly obtained graph corresponds to

a particular region. Results of blob segmentation are shown
in figure 10. We assign to the nodes the bi-dimensional his-
togram as explained previously, computed over the under-
lying region. When the graph presents cycles, we break the
weaker connection in term of XQ distance; on the contrary,
when disjunction occur (for instance the trunk and the feet
of a body), we merge the similar nodes by merging the cor-
responding histograms. A blob is thus explained by a chain
which nodes are valuated by a bi-dimensional histogram.
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Figure 10: Segmentation of blobs into 4 regions

5.1.3 Identification across the network

Two major issues arise to cope with the identification prob-
lem over the network. The former is rather an engineering
issue, and concerns the representation of the data. The lat-
ter concerns the metrics used for comparing the blobs to
achieve the a consistent labeling.

For the first point, we take real advantage of the CLO-
VIS framework and it capabilities of marshaling complex
and structured data: the chain representation of the detected
blobs are transmitted over the network, without the use of
any specific development.



In order to take advantage of the camera network topol-
ogy, lines representing entering/exiting regions in the scene
are bound to the edge of the topology graph. When a blob
disappears from a camera, it first crosses one of these lines,
and its signature is sent to the correct adjacent camera. On
the other part, when a camera receives an upcoming blob
event, the blob’s signature is pooled and compared to each
newly detected blobs crossing the line specific to the cam-
era that sent the event. The comparison uses a chain edit
distance technique, and we choose the maximum a poste-
riori over the score extracted from the first frames after the
blob appearance and within a time window starting from the
upcoming event.

6 Conclusion and perspectives

The three applications have shown that development of spe-
cific video-surveillance applications can be done by part-
ners in parallel without inferring others. The CLOVIS
framework allow each third-party integrator to develop his
own specific modules and exploit these in the same runtime
environment. Moreover, basic image processing operators
(acquisition, low-pass filter, morphological filters) can be
used directly from the built-in image processing library and
modules sequence execution is performed thanks to the plu-
gin host feature of the platform.

Video-analysis applications developed in the scope of the
project may be enhanced in the future such as the blob sig-
nature, metrics and network layer part. Another planned
improvement of the platform is the development of a com-
plete user interface for assemblage of modules, for the de-
ployment on a network of sensors and for the management
of the system.
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