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Abstract

These lecture notes present several segmentation tools provided by Mathematical Mor-
phology. Together with that presentation, they describe the basic morphological trans-
formations involved in the required algorithms. They then attempt to derive a general
approach of segmentation problems using Mathematical Morphology, which is based on

the two concepts of markers and marking function. This philosophy is illustrated with
several examples,
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1 Introduction

One of the most current problems in image analysis consists in extracting from a scene the
objects or the regions to be analyzed. This image segmentation may well consist in a simple
thresholding, but can also be a very complex operation, based, e.g., on the objects geometry
[25], on computational geometry techniques [23], on texture analysis [11], on region growing
approaches [13,22], etec. ..

In order to solve this kind of problems, mathematical morphology provides the user with
a large set of tools, working on binary images as well as on grey-scale ones. The purpose of
these lecture notes is to describe these tools and to illustrate with numerous examples the way
to use them. However, before presenting them, we will briefly recall the basic transformations
of mathematical morphology (MM) in the binary case (binary morphology) as well as in the
grey-scale one (decimal morphology).

2 Morphological transformations

Mathematical Morphology refers to an image processing methodology which is based on
neighborhood or merphological operations. These transformations act on sets in binary mor-
phology and on functions in the decimal case. Since the result of any of these transformations
is of the same kind as the object on which it is applied (a set is transformed into a set, a
function, into a function), it is now easy to build more and more complex transformations
either by iteration or by concatenation of any primitive transformation. We thus define op-
crations of higher level which, in spite of the more complex algorithms they involve, can be
easily understood and used, since their finality is known and well described. For examnple,
the detection of isolated cells in a cytologic preparation may require hundreds of elementary
transformations. Despite this apparent complexity, the process is rather comprehensible, and
its result quite predictable.

Throughout these lecture notes, an example will be used as a guideline for illustrating
the effects of the numerous morphological transformations that we are going to present: the
image 1a, which represents coffee beans. This grey-scale image is in fact practically a binary
one, since & simple thresholding yields the binary image 1b. However, one can easily observe
on this picture that many coffee beans overlap. As soon as we will have presented enough
morphological tools, we will be able to segment this image, i.e. to separate the different coffee
beans.

2.1 Some properties of morphological transformations

The transformations that we will describe are often equipped with some interesting properties
that we will now review. Let & be a transformation which is first supposed to be a binary
one. ¢ therefore acts on elements of R?, i.e. on sets of R2 (®:P(R?*) — P(R*)). It is said
to be an extensive transformation if and only if:

VX e P(R?), XC ¢(X) (1)
and anti-exiensive if and only if:

VX € P(RY), &(X)CX. (2)
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a. original image . b, thresholded fmage

Figure 1: Coffee beans

Besides, @ is tncreasing if and only if it preserves the order relations between the elements
of R? on which it acts, i.e.:

V(X,Y) € P(R?)?, X CY = &(X)C &(Y). 3)

® will also be said to be idempotent when applying it several times successively comes
down to applying it only once:

VX P(R?), &((X))=d(X). (4)

Finally, two transformations @ and ¥ are said to be dualif and only if applying the former
to a set X is equivalent to applying the latter to the complement X of this set:

VX € P(R?), &(X)° =T(X°). (5)

These properties can be immediately transcribed into the decimal case where ® acts on
functions from R? into R, i.e. on elements of F(R? R). In this case, the order relationship
between functions is the following:

V(f.9) € F(R, R)", f<ge=VzeR? f(z)<g() (6)

2.2 Erosion and dilation

These two operations are the classics of mathematical morphology [25]. They constitute the
basic stone of a large number of more elaborated transformations. Before presenting them, a
few notations that we shall use constantly have to be defined: let O be an arbitrary point of
R? which is referred to as the origin. With any point z in R?, we associate the vector Oz.
Hereafter, we use an abbreviated notation in which, according to the context, = denotes the
point # € R? or the vector Oz. Let now B € ’P(]Rz) be an arbitrary set. We denote B the
transposed set (See Fig. 2):

B ={-s,5€B). | (7)

Besides, for any o € R?, we denote B, the translation of set B by vector a:
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Transposition

Figure 2: Transposition of a set

B, = {a+=z,2 € B}. (8)

Consider now a set X C R?®. The dilation of X by B is the set of the points z in R?

“such that the intersection between X and B, is not empty (see Fig. 3a). The resulting set is
denoted X & B:

X®B={zeR,XNB,+0}. (9)

The erosion is defined in a similar way: X eroded by B, denoted X © B is the set of the z in
R’ such that B, is totally included in X (see Fig. 3b):

X6B={zecR B, cX} (10)

The set B, which plays a particular role in these transformations, is called structuring

Figure 3: Dilation and erosion of X by B

element. Fig. 4 illustrates the effects of an erosion and of a dilation of our coffee beans by a
hexagon.

Dilations and erosions are inereasing transformations. Moreover, they are dual, which
means that the dilation of a set X is identical to the complementary set of the erosion of X©:

X @B =(X°0cB)yF. (11)
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a. dilation ' b. erosion

Figure 4: Hexagonal binary dilation and erosion

One can also say that when eroding a set, its complement is automatically dilated. In this
sense, the morphological transformations not only act on a given set X, but on the whole
space. The notations @ and & were introduced by Minkowski [21]. As a matter of fact, the
dilation (resp.the erosion) of X by B is identical to the Minkowsk: addition (resp. subiraction)
of X and B.

These two notions are easily extended to the decimal case {4]. To do so, it suffices to
introduce the notion of subgraph or umbra of a function. Let f be a mapping from R? into
R. Its (closed) umbra U(f) is the set of the points (z,y) in R® x R such that y < f(z). We
can therefore dilate and erode this set by a three-dimensional structuring element B. One
can show that the dilation (resp. the erosion) of the umbra of f by B is still the umbra of a
function, which is called the dilation (vesp. the erosion) of f by B and denoted f @ B (resp.
f © B). Fig. 5 shows an example of a dilation of a decimal function in the one-dimensional
case, i.e. when f: R — R. '

S
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& function f and its umbre U(f) b, dilation of f by dise D

Figure 5: Grey-scale dilation

For the sake of algorithmic simplicity, morphologists most of the time restrict themselves

to planar structuring elements, i.e. structuring elements which are included in R? x {0}. In
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this particular case, one can prove that the dilation and the erosion of a function f by a
planar structuring element B can be written:

ege | (FOB)@)=supyep, f(y)
R (F o B)(=) = intyen, £(3) (42)

Fig. 6 shows—again in the one-dimensional case—how a function is transformed when it
is dilated and eroded by a planar structuring element. In particular, the dilation widens
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a. dilation b. erosion

Figure 6: Dilation and erosion of a function by a planar structuring element

pesks and fills valleys whereas the erosion has the opposite effect. On Fig. 7, the same
transformations are applied to a real grey-scale image.

a, original image b dilation €. erosion

Figure 7: Decimal dilation and erosion by a hexagon of size 2

2.3 Hit or miss transformation, thinning, thickening

Let us consider now a structuring element B made of two disjoined parts B; and B,, with
the same origin. Such an element allows us to define a new transformation, called the hit or
miss transformation (HMT). This operation, denoted «, is more general than the erosion or
the dilation, and is defined as follows:

VX eR:, X+B=(X0B)N(X°6h). (13)
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The HMT is neither increasing, nor extensive or idempotent. .. It is at the basis of the defi-

nitions of the thinning X o B of X by B and of the thickening X ® B of X by B:

XoB = X/(X«B) (14)
XO0B = XU(X*B) (15)

The thinning is an anti-extensive operation whereas the thickening is an extensive one. More-
over, the dual operation of the thinning by B = (B, B;) is the thickening by B’ = (B,, B, ):

XoB=(X°®B), with B=(B,B;)and B' =(B,, B,). (16)

Thinnings and thickenings can also be extended to the decimal case. They are mainly used
in algorithms generating connected skeletons and skeletons by influence zones (See § 3.1).

2.4 Opening and closing

As was said above in § 2, morphological transformations and in particular erosions and
dilations can be iterated. One can show that under certain conditions that will be discussed
later (See § 2.4.1), dilating a set X (or a function f) n times successively is equivalent to
dilating it only one time by the homothetic structuring element. By duality, this remark
applies to the erosion. On the other hand, erosions and dilations can also be concatenated.
Two transformations can thus be defined: the opening and the closing. In the binary case for
instance, the opening of a set X by a structuring element B, denoted (X)g, is defined by:

(X)s=(XoB)o B. ' (17)

Therefore, in order to open X by the structuring element B, we first erode X by B and then

dilate the resulting set by the transposed set B of B (indeed, B = B !...). The opening
operation thus defined is anti-extensive. Fig. 8 displays an example of a binary opening by a
disc.

Figure 8: Opening of a set X by a disc D

Similarly, we define the closing of X by B, denoted (X)B, as follows:

(XY =(XeB)oB. (18)
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This operation is extensive.
Like the pair erosion-dilation, opening and closing are dual operations:

(X=X (19)

Fig. 9 illustrates the effects of these transformations on our binary image of coffee beans.
We can see that both transformations tend to s th the contours of the sets: the opening

b closing of size 4

a. op ui‘ny of size 12
Figure 9: Hexagonal binary opening and closing

removes capes whereas the closing fills gulfs. Moreover, the opening may disconnect sets
and suppress their small connected components whereas the closing tend to bind particles
and to fill their holes. For these reasons, openings and closings serve two major purposes:
granulometries and filtering.

The above definitions of opening and closing easily extend to the decimal case. Fig. 10
shows—again in the one-dimensional case—how these transformations act on functions. One

e
o
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B

a. closing b. opening

Figure 10: Closing and opening of a function by a planar structuring element

of the remarkable effects is again that of smoothing: the decimal opening tends to suppress
the peaks whereas the closing tends to fill up the valleys. The results of a hexagonal opening
and of a hexagonal closing on image 7a is displayed on Fig. 11.
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t

e opening o b. closing

']

Figure 11: Hexagonal grey-scale opening and closing

2.4.1 GGranulometries

In the binary examples presented earlier, we could notice that an opening suppresses the
particles—i.e. the connected components——which are “smaller” than the structuring element
(i.e. that cannot contain it). Therefore, it seems possible to sieve a set by using this operation
with larger and larger structuring elements. In order to formalize this type of transforma-
tion, we introduce the notion of granulometry and of granulometric transformation [17]. Let
(#2)rer+ be a family of transformations depending on a unique parameter A. This family
constitutes a granulometry if and only if the three following properties are satisfied:

VX e Rt &5 is increasing, - (20)
VA e RY, ¢, is anti-extensive, (21)
V()\, [.1,) c R+2, ¢)\¢,u = ¢’,u¢)\ = quax()\,u) ) (22)

Notice that property 22 implies the idempotence of the ¢,’s.
One can prove that if B is a convex set, the family of the openings by the homothetics
(AB)eg+ of this convex is a granulometry (See Fig. 12).

a. opening of size 6 b, opening of size 10 ¢. opening of size 14

Figure 12: Granulometry by openings of the coffee beans image

Note that the use of a convez structuring element B is imperative in order to satisfy
property 22, i.e. in order that the operation has a physical meaning. Moreover, it is not at
all necessary to introduce the notion of particle for defining morphological granulometries:
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contrary to usual'sieving operations, granulometries are not related to the notion of connected
components and can therefore apply. to continuous media.

In particular, it is possible to perform the granulometry by openings of the complement
XC of a set X (see Fig. 13). But, as explained above, performing openings on X% amounts

" a. closing of size 2 b, closing of size 4 . c. closing of size 6

 Figure 13: Granulometry by closings of the coffee beans image.

to performing closings on X . Therefore, rather.than ha,ndling.tw-o different types of granulo-
metric transformations—the openings by the AB’s of X and of X C_, it is more interesting to

* generalize the notion of granulometry to two-phase images. To do so, it suffices to transform

property 21 into:

{ (i) &y = identity

(VO EREAZ ) — VX CRY, B(X)C BX) 2

In the case of granulomefries by openings, (®3)xer is made of two types of transformations
and we have:
@5x(X) = (Xy*® when <0
B(X) = X (24)
@A(X) = (X)AB when A >0

It is then easy to associate a measure with each ®,(X) and to plot granulometric curves [10}.

Furthermore, there corresponds to every set X a function g, called granulometry function.
This function associates with every point z of X the size A of the largest opening (X)ap of
X which still contains z. g, synthesizes all the granulometric information (See Fig. 14). The
notion of granulometry extends without any restriction to the decimal case. Finally, note
that among all the convex sets B available for performing granulometries, balls and their
digital approximations—hexagons (denoted H, 2H,...,nH), squares, rhombododecahedrons,
etc. . ,—are preferred.

2.4.2 Filtering

‘We have seen that the opening and closing operations tend to smooth the objects contours.

These smoothing properties are equally true in the grey-scale case, where they are particularly
useful. In fact, openings and closings constitute a particular class of morphological filters, a
morphological filter & being a transformation satisfying the two following properties:

(i) @ is increasing

(ii) & is idempotent
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Figure 14: ‘Granulometry function of the coffee beans.

The theoretical study of these filters allows to exhibit a certain number of transformations,
mostly built as combinations of openings and closings of different sizes [26, chap. 5-10]. They
are especially interesting in all problems concerning grey-scale image enhancement. However,
we will not deal with these filters any longer. Their presentation would exceed the framework
of these notes. We will just present an example of their use in § 4.4.

2.5 Maximal balls and skeletons

From what precedes, one can see that the opening of a set X by a disc of radius r is the set
of the points of X that are scanned by this disc when it is forced to stay inside X. Moreover,
when one performs a granulometry by openings (by balls {AB},cg+)}, X is decomposed into
a union of balls of increasing radii. Thus, the opened set of size A of X—i.e. the opening of
X by AB—is the part of X in which balls of radius A can be included. Likewise, (X),p is the
part of X in which balls of radius p can be included. However, if A < g, the balls of radius A
which are also included in (X),p are contained in at least one ball of radius ;. Hence, they
are redundant for the description of X in terms of balls.

In order to better formulate this intuitive representation of X, the notion of mazimal ball
is introduced. A ball B included in X is said to be maximal if and only if there exists no
other ball of X containing it:

VB’ ball ,B'CX, BCB =B =B. (25)

We can see that the redundant balls of radius A mentioned in the preceding paragraph are
precisely not maximal. It is now easy to prove that any set X can be expressed as the union
of its maximal balls:
X = U B (26)
B max. ball of X
This representation can actually be simplified further: the centres of the maximal balls

and their associated radii are sufficient. The locus of the centres of the maximal balls is called
the skeleton of X [9]:

S(X) =J{z € X,3r > 0 such that B(z,r) maximal in X}. (27)

Fig. 15 shows a few examples of skeletons and of maximal balls. Now, to every point of the
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Figure 15: Some examples of skeletons and of maximal balls

skeleton, one can associate the radius of the corresponding maximal ball. A mapping ¢, is
thus defined on S(X), which takes its values in R*. It is called quench function or eztinction
function (See Fig. 16b):

(28)

_ gt
. { S(X) R

x — 1, B(z,r) maximal

Moreover, an interesting result concerning the skeleton of a set X is that it can be expressed
as the union of the residuals of the successive openings of X [18]. In the digital case, the
formula is the following;

Feo

$(X) = UI(X ©nB)/(X ©nB)s (29)

n=0

Indeed, for a given n > 0, X ©nB is the locus of the centres of the balls of size n included in X
Now, (X ©nB)g is exactly the locus of the centres of these balls of size n which are included
in a ball of size n + 1. Hence, they are not maximal ones. Therefore, (X © nB)/(X ©nDB)g
is the locus of the centres of the maximal balls of size n of X and the union of these sets for
all n > 0 yields the skeleton of X.

The quench function is particularly useful to compress binary images [19, page 49]. Be-
sides, this representation of a set X by the pair (S(X), ¢, ) allows us to define certain trans-
formations by associating with ¢, a new function (g, ): starting from X given by its pair
(5(X), g5 ), a new set y(X) can be reconstructed then, which is defined as follows:

vX)= U B(z,v(ax)(=)) (30)

z€S(X)

In particular, erosions, dilations and openings by balls may be obtained this way [19, pages
50-52] (See table 1). Note that the closing cannot be obtained by this means. Besides, the
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‘Transformation Associated function (g, )

XeAB ¥(g, )(z)=-1 if 2 <A
=q¢,{(2) — A otherwise
X @B 72 )(@)=gx(z) + A

s | Ha)@=1  He<i

=q, (a:) ~ otherwise

Table 1: How to obtain an erosion, a dilation or an opemng (by balls) from the pair
(S(X), q, )—A ball of radius —1 stands here for §. -~ .

skeleton of a set 'y(X ) deriving from this type of transformation has generally nothing in

common with S(X). Only the skeleton of the erosion of X is mcluded in S(X), but there is

already no relation between S(X) and S(X & AB) any more,

Paradoxically, as efficient as this skeleton by maxin al b alls may be for representing sets, -
, it is not connected, as illu rated. by Fi

5.

Figure 16: Skeleton by maximal balls (a) and quench function (b) on the coffce beans

2.6 Gradient and “top-hat”

Other elementary transformations can be defined by concatenating erosions, dilations, open-
ings and closings. In particular, in grey-scale morphology, the combination of morphological
and arithmetic operators allows us to generate new transformations. Among them, two are
widely used in practice: the gradient and the top-hat transformation.

2.6.1 Gradient
The morphological gradient of a function f is defined by:
(f®eB)—~(foeB)

grad(f) = 1% 5

(31)
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where ¢B designates a ball of radius e. The preceding formula is digitized on a hexagonal

grid in the following way:

gmd(f)m (f@H);‘(f@H) ,

with H standing for the elementary hexagon previously introduced [2]. One can show that
the morphological gradient of f is equal to the modulus of the gradient of f—supposed to be
continuously differentiable—classically defined as:

(32)

fradt)l = | (G + Gy ] | @)

There exist numerous variations of this transformation. In particular, one can define in
terms of morphological operations directional gradients and represent the ammuths of the
gradient vectors.

Fig. 17 illustrates this transformation. Note that the high values of the gradient’s modulus
correspond to the highly contrasted areas of the image. This property will be used in the
following for detecting contours of grey-tone images (See § 4.3). '

a. original grey-scale image © b, gradient

Figure 17: Morphological gradient

2.6.2 Top-hat transformation

The top-hat [19, page 101] is a morphological transformation which enables to extract the
bright and narrow zones of a grey-tone image. These areas are those which disappear after
a decimal opening. So, given a structuring element B, the top-hat transform HdFg(f) of a
function f is defined by:

HiFg(fy=f—(f)B. (34)

This transformation extracts the residuals of the opening of f, the “size” of these residuals-

. being smaller than that of the structuring element B. Here again, B is preferably chosen to

be a convex set (disc, segment,...). In particular, it is often judicious to combine different
homothetics of the same convex set, or to use linear structuring elements with different
orientations so as to precisely select the regions to be extracted.
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Similarly, the dark and narrow areas of an image can be extracted by means of the dual
top-hat transformation HdFy, which is defined by:

HiFp(f) = (f)° - f (35)

. “standard” top-hat e b dual top-hat

Figure 18: Hexagonal top-hat transforms of image 17a
Quite often, the regions extracted by these transformations are also filtered according to
their contrast by thresholding the residuals. For example, thresholding at level h a top-hat

performed with a ball of radius A allows us to extract from an image its crests higher than A
and less wide than 2A (See Fig. 19).
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Figure 19: “Crests” extracted by a top-hat followed by a thresholding.

2.7 Extrema of a function

The notion of the ezirema of a function will soon be very useful and should be introduced right
now. Let f: R* — R be a function. The graph of f may be considered as a topographic
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surface. A mazimum of f is then a summit of this surface, i.e. an area (connected, but not
necessarily reduced to a single point) from which it is impossible to join a higher point by a
never descending path (See figure 20).

Figure 20: Maxima of a function

Let us consider in particular the different thresholds of f. A maximum of this function at
the altitude h is a connected component of the threshold S,(f) = {z € R?, f(z) > h} which
contains no connected component of any threshold Sy where k' > h.

2.8 First steps toward segmentation: marking the objets

The notions we have just introduced will now help us solving a typical segmentation problem
in the binary case: the separation of balls or objects that partially overlap. This kind of
situation is frequently encountered in numerous fields of application of image processing, like
the distribution of marbles in agglomerate materials [10], the separation of cells in a smear
[19], the counting of particles,. . .not to mention our coffee beans image. Solving this problem
first requires a correct marking of the components to be separated. This approach is in fact
quite natural: someone who would be asked to point with his finger at the different objects
present 'in the image would do exactly the same.

Let us first consider the very simple case where the set X under study is made of two
circular components (See Fig. 21a). As seen above, X can be represented by its skeleton S(X)
and its quench function ¢,. In order to bring its two components to the fore, it seems quite
natural to look for the regions of X containing the largest maximal balls. We thus search on
S{X) the points whose associated maximal balls are the “largest” ones: these points are the
maezima of the quench function ¢, (See Fig. 21b).

Unfortunately, it is rather delicate in practice to determine the maxima of a function
which is defined on a non-connected support. This is the reason why we need introducing a
new function disiy, defined on X and called distance function:

X — R* |
dist 36
13 X { z — d(a:, Xc) ( )

With every point of X, disty associates its distance to the nearest point in the complement
X© (See Fig. 22). The different contour lines of this function correspond to the boundaries of
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a. skeleton of X b, g, and iis mazima

Figure 21: Skeleton and maxima of the quench function

the sucessive erosions of X. One can show that the maxima of distyx are exactly the same as
those of the quench function ¢, . Besides, in the discrete case, these maxima can be detected
as follows: let X, designate the erosion of size n of X. X, is the threshold of the distance
function between levels n + 1 and +oco. Let us now perform an elementary erosion—of size
one—of this eroded.set. Any connected component C of X, which disappears after this
erosion is, by definition, a maximum of the distance function (See § 2.7). The set of these
maxima bullds the ultzmate erosion of X (See Fig, 22b i .

a. distance function (bright color <& long distance) b. ultimatle erosion = mazima of the distance function

Figure 22: Distance function and ultimate erosion

The example of the coffee beans presented on Fig. 22 shows that the ultimate erosion
is indeed a marker in the sense indicated above. Each component of the initial set—the
coffee beans-—is marked through this procedure. Moreover, this marking is a one-to-one
correspondance: up to the parity errors due to digitization, to each coffee bean corresponds
one and only one marker. Besides, we have seen that these markers can be defined as the
extrema of a function, namely the distance function.

In the following, we will try to show that this approach is quite general in mathematical
morphology. Any segmentation obeys to one—or several—marking function(s). The detection
of the extrema of this (these) function(s) constitutes the first step of the segmentation process:
the generation of markers of the objects to be segmented. We shall see that marking functions
are also used in the second step of the segmentation process (See § 4).
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3 Homotopic and geodesic transformations

Now that we have the markers, let us proceed to the actual segmentation step, that is to the
extraction of the marked objects. In so doing, the use of extensive operators will be required.
Moreover, to preserve the marking, these operators should satisfy the two following criteria:

1. | Not to connect markers, | preserve their number and the neighborhood relationships
etween them. Such morphological operators do exist and are designated as homotopic
transformations.

2. | To work only on the set X to be segmented.| Indeed, it is useless that the operator

extends beyond X, since the points of X¢ are of no interest. This category of morpho-
logical operators is formalized through the notion of geodesy and of geodesic transfor-
mations.

3.1 Homotopy and skeletons

Let X C R? be a connected set and 2 and y two points of X. Consider two different paths
(1 and C;, joming z and y. C; and C; are said to be homotopic if and only if it is possible to
go from €} to C; by a continuous sequence of continuous and reversible deformations. Take
for example Fig. 23: the paths C; and C3 are homotopic whereas this is not the case for
€y and Cj, since the hole in the set makes it impossible to map Cs onto C) by continuous
deformations. One can show that the homotopy relationship between paths is a relation of
equivalence. -

Figure 23: The pair of paths (Cs, C3) is homotopic whereas the pair (Cy, C3) is not

S is said to be simply connected if and only if there exists one and only one class of path
equivalence between any two points of X. This comes down to saying that X is connected
and without any hole.

A transformation @: P(R?) — P(R?) is said to be homotopic if and only if:

VX c R?, 30 :R? x [0;1] — R?, continuous mapping,
¥(X,0) = X,
¥(X,1) = @(X).

such that (37)
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To use an image, an homotopic transformation transforms a set X into a set ¥ through a
continuous sequence of continuous transformations. Thus, a simply connected set is trans-
formed into a simply connected set, a set with one hole into a set with one hole, etc... More
generally, if X C R? is made of several connected components (X;)ie(1,+], the number and the
relative positions of these X; are preserved (an homotopic transformation preserves the path

classes for both X and X©. See Fig. 24).

Figure 24: An example of a homotopic transformatlon E

Classical examples of homotopic transformations in MM are gwen by the skeletons which
are said to be connected [19, page 75]. They are obtained by a sequence of thinnings (for the
classical skeleton) or a sequence of thickenings (for the exoskeleton, i.e. the skeleton of the
background) using structuring elements defined on the “elementary ball”—hexagon on the
hexagonal grid, square on the square grid. These structuring elements are selected in order
to produce homotopic thinnings and thickenings. Thus, on the hexagonal grid, we can show
that there exist three structuring elements (up to the six rotations) having this property.
These elements are called L, M and D [12] (See Fig. 25). When using them, we see that

e & 0.7 ® o
. e @ ¢« o @$ e e O

o © O o o O

L M D

Figure 25: Structuring elements used for constructing connected skeletons

only L and M allow to derive skeleton-like transformations, i.e. a sort of medial axis of the
objects (See Fig. 26). As a matter of fact, it is possible to show that there exist very close
relationships between these skeletons of type L and M and the skeleton by maximal balls
described in § 2.5 [8]. -

One can also show that the connected skeleton equals the crest lines of the distance
function and that it can be obtained as such [26, chap. 13] (See Fig. 27). Moreover, this
approach allows to extend the notion of skeleton to the case of grey-scale images [20]. Fig. 28
displays an image of chromosomes and the corresponding decimal skeleton (For this image,

we actually performed the skeleton of the inverted image, i.e. we followed the “bottom of the
valleys”.).
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a. L-skeleton b, M-skeleton ) ¢. D-skeleton

Figure 26: Skeletons resulting from successive thinnings with the structuring elements L, M
and D '

Figure 27: The skeleton follows the crests of the distance function (artificially shaded here

[30])

a. image of chromosomes b. decimal skeleion

Figure 28: decimal skeleton




H
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As concerns the skeleton by thickenings, it is mainly used to produce the SKeleton by
Influence Zones or SKIZ. The SKIZ is defined as follows: let X C R? be a set made of n
connected components {X;}ienn). The influence zone 2(X;) of X; is defined as the set of the
points of R? that are closer to X; than to any other connected component of X:

AX) = {z € BLY) #4,d(z, X)) < d(z,X;)} (38)

Remark that the influence zone of a connected component X; of X has generally not the same
homotopy as X; itself (e.g. on Fig. 29, we see that X; may have holes whereas z(X;) does
not.). The set of the boundaries of the different influence zones is by definition the skeleton
by influence zone of X [14]. Fig. 29 shows an example of SKIZ.

Figure 29: An example of a skeleton by influence zones

The SKIZ is usually obtained by keeping only the closed arcs of the skeleton by thickening
of X (i.e. its exo-skeleton). In order to suppress the non-closed arcs of S(X), a particular
kind of thinning is used, which is called a pruning. Let us stress that the set resulting from
this step may, in some special cases, still be a subset of the true SKIZ (See Fig. 30).

Figure 30: A trap in the construction of the SKIZ: arc A does not belong to the true SKIZ
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3.2 Geodesics
3.2.1 Geodesic distance

The concept of path has already been used for defining the homotopic transformations. It
will again be useful here to define a distance associated with a set X of R%. Let (z,y) € X2
The geodesic distance dx(z,y) between « and y is the lower bound of the length of the paths
between 2 and y in X (if any):

dx (z,y) = inf{l(Cyy), Csy path linking z and y in X}. (39)

When z and y belong to different connected components of X, we conventionally put dx(z,y) =
+00. According to this remark, dx is a “generalized” distance (See Fig. 31).

Figure 31: Geodesic distance

We call geodesic ball of radius r centered in = € X the set Bx(z,r) defined by:

BX($7T)={y€XadX($:y)<T}' (40)

3.2.2 Geodesic transformations

Let now Y be a subset of X equ (pped with the geodesic distance dy induced by X. The
erosion EX (Y) and the dilation D )(Y) of Y by geodesic balls of a given radius r are defined
this way [15,16]:

EQY) = {yeX, Bx(y,r)CY} (41)
DY) = {yeX, Bx(y,r)NY # 0} (42)

These definitions are quite similar to the classical Euclidean definitions of the erosion and
the dilation by balls. The differences come from two main factors:

* X has become the working space (instead of R?). In other words, the result of these
transformations is always contained in X,
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e The structuring elements that are used are defined by means of a distance and do not
act as “rigid” structuring elements as in the Euclidean case. The range of available
structuring elements is here very poor.

Fig. 32 shows an example of geodesic erosion and dilation.

a. dilation b. erosion

Figure 32: Basic geodesic operations

In practice, the geodesi‘i: dilation of size n is performed on a digital image by iterating
n geodesic dilations of size 1. The latter is obtained by simply intersecting the Euclidean
dilation of size 1 of Y with the “space-set” X:

DR) = (Yeéﬂ)'nx (43)
p{(v) = DPDYP(...DRP () (44)

The erosion Eg;‘)(Y) is then easily obtained by duality. By analogy, the same formulae
immediately extend to functions. A function ¢ : R?> — R can thus be dilated geodesically
with respect to a majoring function f : R? — R as follows:

DP(g) = inf(g® H, ) (45)
D{(g) = DP(DP(...DY (g))) (46)

Remark that it is difficult here to exhibit the underlying geodesic distance. The geodesic
digital erosion of f with respect to g (minoring function) is defined in a similar way:

EP(f) = suw(fOH,g) (47)
EPU(f) = EPEP(..EP()) - (48)

e
n times
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Consider now a set Y included in the connected component X; of X. If ¥ is dilated
geodesically in X, we are sure not to go beyond X;, whatever the size of the dilation. More-
over, if ¥ is dilated enough, we obtain the entire X;, i.e. the connected component of X which
is marked by Y. Besides, this extends to the case where Y marks several connected compo-
nents of X. The transformation we have just brought to the fore is called reconstruction. It
is denoted Ry and is defined in a more formal manner as follows:

Rx(Y)=D¥™(Y) = lim DP(Y). (49)

Fig.33 displays an example of a binary reconstruction. Obviously, the reconstruction will

Figure 33: Binary reconstruction from markers

be very useful for solving segmentation problems, since, as we have seer, it allows us to extract
all the connected components marked by a marking set Y. This tool is however insufficient:
the result of the reconstruction is indeed unchanged whatever the number of markers per
connected component. '

In the decimal case, a function f can also be reconstructed from a “marking-function” ¢,
majoring or minoring f. When e.g. ¢ < f, we set:

Ry(g) = D{*(g). (50)

Through this operation, only the “domes” of f marked by ¢ can be (partially or totally)
reconstructed (See Fig. 34). On the other hand, when g > f, we set:

Rj(g) = E{*™)(g) (51)

and g is now a marker of the “basins” of f which are left after this reconstruction operation.

In order to exhibit powerful separation tools, we have now to add the previous notion of
homotopy to the geodesic operations. This is done quite simply: we can for example define
geodesic skeletons by a similar approach to that which is used in the Euclidean case [19, page
43]. The notion of maximal ball can thus be transposed to the geodesic case. Likewise, in the
definition of the skeleton by influence zones, the Euclidean distance can perfectly be replaced
by a geodesic one. Thus, we define the geodesic SKIZ of a set ¥ in a set X (see Fig. 35).
Notice in particular that, if ¥ is made of n connected components, X will be segmented in n
parts.
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a. funciion f and marking function g b. Rj(g) = reconsiructed function f

Figure 34: The decimal reconstruction Ry S

Figure 35: geodesic SKIZ




. T2

4 FROM MARKING TO SEGMENTATION 27

4 From marking to segmentation

4.1 A binary segmentation algorithm

Let us come back to our problem of beans segmentation. In a first step, they have been
marked by ultimate erosion. Now, we can consider using the geodesic skeleton by influence
zones described in § 3.2 to separate the beans. Each of them would be defined as the geodesic
influence zone of its marker (See Fig. 36a). However, the result is not satisfactory, because
the separating lines exhibited between the beans are not well positioned. This is due to the
fact that, by construction, each separating line tends to be placed mid-way from the markers.
Yet, we know that these markers do not correspond to the same erosion size (See § 2.8) in
the ultimate erosion algorithm. When two adjacent beans are of very different size, their
separating line should be closer to the marker of the smallest bean {See Fig. 37). '

a, by geodesic SKIZ b. by "walersheds” .

Figure 36: Segmentation of coffee beans

a. by geodesic SKIZ: wrong result b desired result

Figure 37: Separation of overlapping balls

To solve this problem, one has to take into account the values associated with the con-
nected components of the ultimate erosion by the quench function ¢,. This can be done by
using the following procedure, presented here in the digital case: let ny., be the size of the
largest non empty erosion of X: '

X O H #0 and X © (ngax + 1) H = 0. (62)
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X O Npmax i is necessarily a subset of the ultimate eroded set. Let X,,__ designates this set.
Consider now the erosion of the set X of a size immediately inferior to the preceding, that is
X O (Nmax — 1)H. The following inclusion relation holds:

K © X O (s — 1)H. (53)

Nmax —

Let Y be a connected component of X @ (niymax — 1)H. There are several possible relations
of inclusion between Y and Y N X, (See Fig. 38):

1. YN X,.. =& in this case, ¥ is a new connected component of the ultimate erosion
of X.

2. Y N X,,.. # 0 and is connected: ¥ can then be used as a new marker.

3. YNX,,, #0andisnot connected: the new markers that are used in this case are the

geodesic influence zones in ¥ of the connected components of ¥ N X,

max "

Y
e Y NnXp =9 ’ b YNXn, oo # 9, connecied e ¥ NXn.« 0, not connected

Figure 38: The three possible relations of inclusion between ¥ and Y N X,,__
Denote X,,,,.—1 the set of markers exhibited at level . — 1. What applies to one connected
component applies to all, hence X,_.._1 is made up of the geodesic influence zones of X,__,
in X © (nyax — 1)H to which are added the connected components of the ultimate erosion at
level nya — 1 (See Fig. 39).

This reconstruction-based procedure can be iterated at levels nyax ~ 2, nmax — 3, ete. ..
down t¢ level 0. In a more formal manner, let n €]0; nyax]. For any X C R?, we introduce
the following notations:

o u,(X) = set of the connected components of the ultimate erosion of X at level n:
T €up(X) <= 2€S5(X)andq,(z)=n. (54)
e VY C X, 2,(Y) = set of the geodesic influence zones of the connected components of

YinX.

The recursion formula between levels n and n — 1 is then written:
Xner = ZXo(n-1)H (Xa) Uy (X) (55)

as illustrated by Fig. 39. The set X derived from this procedure provides a much better
segmentation than the rough geodesic SKIZ (See Fig. 36b). Indeed, the different connected
components of the ultimate eroded set intervene here in an order which depends on the value
they are associated with by the quench function.
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Figure 39: Recursion from X,, to X,,_;

4.2 ‘Watersheds

'The preceding algorithm may seem a bit complex. Therefore, we are now going to give it
a more intuitive interpretation by using once again the chsta,nce functlon disty associated
with X. For the sake of consistency, we consider the function f = _—-dzstx ‘and regard it as a
topogra,phm surface. The connected components of the ult1ma.te erosion of X exa,ctiy equal
the minima, of f. c R

Suppose that we pearce this topographic surface at the loca.tlon of ea,ch minimum. Then,
plunge it slowly into a lake. The water first gets through the holes located at the deepest
minima and gradually floods the whole surface. To complete the experiment, an observer is
assigned the mission of erecting a dam in any point where waters coming from two disjoined
minima could melt. At the end of the plunging procedure, when the surface is completely
immerged, the finally built dam constitutes the dividing lines of the waters coming from the
different minima (See Fig. 40). These dividing lines are called the watersheds of f. The
different pools separated by the watersheds cover particular zones of f designated as the
catchment basins associated with each minimum.

Catchment
basins

Watersheds

Y

Figure 40: Watersheds and catchment basins
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In examining the pools obtained at each step of the immersion, we can see at once that
their set exactly corresponds to one of the X,, previously used (See § 4.1). In other words,
the plunging procedure is identical to the separation algorithm designed above, and the
watersheds equal the separating lines defined by this algorithm.

More generally, the watersheds can be defined for any decimal function f : R’ — R
(Refer to [3,7]). If we consider the graph of f as a topographic surface and detect its minima,
nothing prevents us from applying the same plunging procedure. Hence, there corresponds
one catchment basin to each minimum of f. Besides, the used procedure can be transposed
for computing the watersheds of f. To do so, it suffices to replace the erosions X © nH by
the successive thresholds of f.

4.3 Watersheds and segmentation of decimal images

The notion of watersheds will now serve as a guideline for the segmentation of grey-scale
images. In this case, the segmentation is most of the time related to a contour detection
problem. However, the notion of contour is not always clearly defined and here again, when
one is asked to specify which objects to segment, he may be able to point them out without
being able to draw their precise contours. In other words, in a grey-scale image, a shape is
most of the time characterized by the fact that, to it, corresponds a homogeneous grey-tone
area rather than a clearly contrasted and delimited contour Therefore the homogeneous
zones are once again the markers of the objects to extract. :

To say that an area of a function is rather homogeneous means that there are only slight
variations of the grey levels inside this area, or else that it has a low gradient. Our objects
markers may then be taken as the minima of the gradient’s modulus of f (See § 2.7). Hence,
delimiting the objects consists in computing the watersheds of the gradient. Each object
represent indeed a “hollow zone”, i.e. a catchment basin of the gradient function. Fig. 41
shows an example of contour detectlon by watersheds of the gra.dlent on a picture representing
metallic fractures [6].

a. original image: metallic fractures ' ' b, wateraheds of the gradzent

Figure 41: Contour detection by watersheds of the gradient

Once again, we see that the minima of a function—the gradient—serve as the markers
of the zones to be segmented. The watersheds then allow us to extract the actual contours
of these zones. This approach is quite similar to that which is used in the binary case and
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consists in defining a so-called marking function. In the segmentation process, this function
provides both the markers and the contours. The only problem is thus to define a good
marking function, i.e. a function that synthesizes the physical characteristics of the objects
to segment. The distance function was chosen for the binary segmentation of beans since it
1s closcly related to the notion of maximal balls included in a set. Similarly, the gradient
is used as a marking function for the segmentation of grey-scale images, since its modulus
corresponds to the physical notion of contrast. However, we shall see that in practice, the
marking function is rarely easy to exhibit.

4.4 How to make a good use of the segmentation tools

We are going to illustrate what has just been said by applying our segmentation tools to two-
dimensional electrophoresis spots [5] (See Fig. 43 (a)). The problem is here clearly defined:
we want to obtain the contours of the dark spots present in this grey-scale image in order to
compute their coordinates on the one hand and their sizes and densities on the other hand.

If, by ‘using again the method described above, we simply perform the watersheds of the
gradient of this image (See § 4.3), the result is obviously disappointing (See Fig. 44 (a)-(b)).
Indeed, the gradient exhibits a large number of minima, mainly due to the presence of noise
in the initial image. However, one can notice that all the spots are marked by these minima
and hence all the contours that seem pertinent to the eye are indeed present (See Fig. 44
(b)). The watersheds are only highly over-segmented. '

When facing this result, we have the following alternative:

¢ To suppress over-segmentation by eliminating the non-significant arc elements of the
watersheds.

¢ To avoid the over-segmentation by questioning the choice of the markers and of the
marking function. ‘

We will not dwell at length on the first possibility, which is most of the time a last resort
measure—with a few exceptions—, due to the fact that one cannot always be exact about
the objects to extract. The over-segmentation mainly comes from the fact that the markers
are not perfectly appropriate to the objects to be contoured. In short, the quality of the
segmentation is directly linked to the marking function.

The second solution for avoiding over-segmentation involves the elaboration of an appro-
priate marking function. The extrema of this function have to mark exactly the objects we
want to extract. Several possibilities exist for constructing this marking function, e.g. filter-
ing of the image’s gradient (See § 2.4.2). This possibility, which constitutes an improvement
w.r. to an existing marking function rather than the real construction of a new one, is still
sufficient in many cases. Unfortunately, it is not true for the electrophoresis image we are
dealing with. Here, we actually need to construct a new marking function. To do so, the
first step—as described above—consists in marking the regions we want to segment, i.e. the
spots, but else the background. To each region must correspond one and only one marker.

Determining these markers involves the use of morphological tools other than the gradient,
which is not appropriate in this case. These tools shall be adapted to the problem under study.
Here, the spots constituting the dark part of the image, they should be interpreted as the
image minima. Yet, the mere extraction of the initial image minima still produces many
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unsignificant minima (See Fig. 43 (4)). However, contrary to the gradient image, filtering the
initial image (with a morphological filter called alternating sequential filter (ASF) [26, chap.
10]) suffices here to produce an image whose minima correctly mark the spots (See Fig. 43
(c)(D)).

As to the background marker, it is provided by the watersheds of the filtered image.
Indeed, these dividing lines separate the different spots and are located on the lightest zones
of the image (See Fig. 43 (¢)).

We have now the desired markers (See Fig. 43 (f)), but this is not enough: we also
need a marking function whose minima exactly correspond to these markers. Moreover, this
function should be “close” enough to the gradient image so that its watersheds be situated
on the contours of the spots. This is why we shall start from the morphological gradient (See
Fig. 44 (a}) and perform two operations:

1. Impose as minima the previously selected ones (in the following, M will denote the set
of the points of R? that belong to these markers-minima).

2. Suppress the undesirable minima of the gradient.

In order to do so, we first assign to the points corresponding to the required minima an
arbitrary negative value c¢. Next, we eliminate the undesirable minima by filling in the
catchment basins that are associated with them. The morphological technique for achieving
the latter operation resorts to the decimal reconstruction R* introduced in § 3.2. The marking
function g which is used here is the following:

reM = glz)=c

e M = g(z)=A (56)

V:cE]RQ,{

‘with R being an arbitrary constant which majorates the gradient function. As concerns the
function f to be reconstructed, it is merely the inf of g and of the gradient grad(f) (See
Fig. 42a). Note on Fig. 42b that the reconstructed function exactly .corresponds to what
was looked for. In particular, its watersheds build a subset of the watersheds of the initial
gradient grad(f). Moreover, the preserved dividing lines are located on the zones with the
highest gradient’s modulus.

Fig. 44-c to 44-e¢ illustrate this segmentation procedure as well as the result we obtain.
Fig. 44-f shows the markers of the spots and the corresponding contours. Considering the
selected markers and the used segmentation algorithm, the result is in accordance with our
expectation: each spot has a unique contour which is located on the inflexion points of
the initial luminance function—i.e. the original image. It is even possible to improve the
contouring by using more sophisticated procedures [5]. For example, we can note that the
contours obtained with the above method delimit for each spot a measuring mask which is
a bit too small. However, by taking into account the values of the gradient along a given
contour, it is possible to extend this mask to the periphery of the spots. The used algorithm
consists in dilating each point of the contour in inverse proportion to the corresponding value
of the gradient’s modulus.
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Figure 42: “Geodesic” watersheds

4.5 Choice of the marking functions: variations and recent devel-
opments

4.5.1 The difficulties of a good marking

The description of the algorithm used to extract the contours of electrophoresis spots have
showed that it is not so simple to define markers. It is often cursory to say that the object
markers correspond to the gradient function minima. Likewise, the marking by ultimate ero-
sion in the binary segmentation has its limits [1]. The latter is efficient only if the components
of the set X under study are “relatively circular” on the one hand, and if they do not overlap
too much on the other hand. For instance, when X is composed of two overlapping discs Dy
and D,, they are both marked by ultimate erosion if and only if their centres are situated
on either sides of the radical axis (See Fig.45). Fig. 46 illustrates a case where the ultimate
erosion and the watersheds of the opposite of the distance function proved insufficient to
separate salt grains.

However, there exists more refined marking tools. Among them, let us mention a trans-
formation called conditional bissector [19, page 55], in which the marking is no longer related
to the maxima of the quench function but to the extrema of its derivative. Similarly, when
the set to be segmented is made up of long particles, it may be interesting to mark their
extremities. This can be achieved either by techniques based on geodesic ultimate erosions or
by using the maxima of the propagation function [24]. The above methods are more complex
to use for segmentation problems, since it is not always easy to exhibit the marking functions
associated with such markers!. ..

4.6 Recent developments

In binary morphology, many segmentation problems have not found an appropriate solution
yet. Among them, we can mention those which consist in segmenting any heap of convex
objects, or intersecting fibers, etc... In such cases, the marking of the objects often requires
an a priori knowledge of their geometry. We will not try to solve such complex problems
here, nevertheless we can give a few hints as to the possible improvements in the already
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Figure 43: Segmentation of electrophoresis spots
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Weaiersheds of the modified gradient

J. Markers and contours of the spots

Figure 44: Segmentation of electrophoresis spots (cont.)
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Figure 45: These two discs overlap too much to be separated by an ultimate erosion

a. initial image (grains of salt) b. “separation” by walersheds of the opposite of the dist. fet.

Figure 46: Inadequacy of the segmentation by ultimate erosion
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described procedures, when dealing with heaps of highly intricated convex particles. We can
for example introduce the notions of ecritical balls and eritical function. The critical balls
form a minimal subset of maximal balls necessary for reconstructing the initial set. When
used together with the critical function, which associates with each point of a set the density
of the maximal balls covering it (See Fig. 47), they provide a more efficient separation than
the one based on ultimate erosion (See Fig. 48).

Dividing line
_»" of the critical function

a. “segmentation” by watersheds of the opposite of the dist. fci. b. eritical function

Figure 48: The segmentation of this binary image by the watersheds of the opposite of its
distance function is not satisfactory, whereas the crest lines of its critical function correctly
separate its components. '

As concerns the segmentation of grey-scale images, the major problem lies in the over-
segmentation of the gradient watersheds. We have seen—and illustrated on an example—
that sophisticated techniques for selecting minima can prevent this over-segmentation. But
it is also possible to suppress it afterwards by techniques introducing a hierarchy among the
contours and the catchment basins: the watersheds allow us to simplify the image by reducing
it into a mosaic of uniform areas (See Fig. 49), which can be interpreted then as a graph. It is
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a. initial image b, mosaic of the catchment basins

Figure 49: Watersheds and image simplification

then possible to define and perform morphological transformations on this graph [27,28,29],
and n so doing, to deterrnme the most 51gn1ﬁcant contours,

5 Conclusion

Throughout these lecture notes, ‘we have attempted to draw a general philosophy of the
segmentation in mathematical morphology. Markers and marking functions are the key con-
cepts of this approach. Because of their didactical aspect, the examples we have presented do
not allow an exhaustive illustration of the infinite possible variations around these notions.
Markers and marking functions are a quite appropriate formalization of the two steps we
must necessarily go through when solving any segmentation problem:

1. What is to be segmented?

2. How to do it?
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