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Abstract

Some applications of the use of extrema of grey-
tone functions are given. After a brief presentation of the
basic transformations of the Mathematical Morphology invol-
ved in this process, the notion of watersheds is introdu-
ced. The computation of watersheds is explained in terms of
propagation and in terms of thinnings. PFinally, two exam-
ples of use are presented on real-world images.

People involved in image analysis, when working
with sets, are mainly faced with the following question :
does the object I am looking for exist or not ? Mathemati-
cal Morphology tries to answer this question using the
fundamental concept of Hit or Miss transformation and the
correlated transforms which are erosion, dilation and so
on. The same people, when working with functions (That is
with most of the real-world pictures) are faced with the
same problems as they were with sets. Unfortunately, in
that case, the answer is a bit more complicated, due mainly
to the fact that there is no longer that simple binary
Situation. Nevertheless, when looking at a picture, one can
easily detect objects because they are lighter or darker
than the background, for instance. So, at a first level of
recognition, the most important information is not given by
the various grey levels of the image, but on the contrary,
by some neighbourhood relationships between the different
elements of the picture. These relationships are often con-
trolled by some extremal features. A zone in the picture
lighter than the background can be for example the marker
of an object. In this paper, we shall present some morpho-
logical transformations using extrema of a function, and
their application to picture segmentation.



Extrema of a function., Definition and computation

We shall assume that our function of interest f
fullfills “"good" properties of continuity. We can define a
minimum of that function in the following way : suppose
that we walk along the graph of this function considered
as a topographic surface., Starting from one point and using
a never ascending path, as long as we can reach a lower
points of the graph, we can say that the former point does
not belong to a minimum. On the contrary, if there exists
no possible descending path starting from a point of the
topographic surface, this point belongs to a minimum. A
good representation of a minimum is given for instance by
the bottom of a crater of a volcano.

More precisely, we can define a minimum using
the various thresholds of f. That is :

Let Xx be a threshold at level A of £

2
X, = {x € R : £(x) = )}
Xk may be composed of n connected components Xi
- J
X)\”LJ.JX)\

One connected component Xi is said to be a minimum at level
A, iff :

Xiﬂxu=¢, Fpu<A

This definition provides a way to compute the
minima using the thresholds of the function. More refined
methods can be used ([1],[2]).

Watersheds of a function

Another very important notion is the notion of
watersheds, The watersheds of a function can be considered
as the zone of influence of its min@ma. An intuitive ap~
proach of this notion can be he following (Figure 1)-



Figure 1 : Watersheds, intuitive definition

Every minimum is embedded in a basin. One way
to determine the extension of that basin is to flood it.
Everytime an overflow occurs, a dam can be built on the
topographic surface to prevent the overflow. When the dam
has drawn a closed contour, we get the boundary of the ba-
sin associated to the minimum. The set of all the bounda-
ries for all the minima of the function is called the
watersheds of that function ([3]).

Very often, the computation of these watersheds
is rather complex. It uses geodesic reconstructions of the
various thresholds of the function ([3]). Fortunately,
there exists another method for building these watersheds,
based on the idea of propagation and, on the other hand, on
a transformation called thimming.

Thinning and propagation
Propagation

In order to introduce the notion of propagation,
let us consider the digitization of the function f on an



hexagonal grid. Every point has six neighbours. Suppose
that we are propagating a flow on the graph of the func-
tion. Assuming now that the flow has reached the center
point, we can easily find which points of the neighbourhood
will be flooded. They are those points higher than the cen-
ter point. If we express these relationships (that is,
which points of the neighbourhood will be flooded) using
direction signs (Figure 2), we get an oriented graph.
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Figure 2 : Propagation graph a) original function
b) associated graph

The detection of the points of the function
belonging to the watersheds is performed as follows :
- First, we can determine, on the propagation graph, those
points which belong to the watersheds. They are the center
points receiving the propagation flow from at least two
connected zones of their neighbourhood.
- Then, the direction signs starting from these points are
deleted (these points being unflooded cannot propagate a
flow to their neighbours). By doing so, we define a new
propagation graph, on which the entire process is re-run
again until we do not gain any new watersheds points.



In practice, this procedure is rather complex,
especially as a number of points have not been explained in
detail here. However, this process can be performed in a
simpler way by using some morphological transforms called
thinnings.

Thinnings
Let T = (T1,T2) be a two-phases structuring ele-

ment. The thinning of -f by T is a transformation which pro-
vides a new function g defined as follows :

iff Sup [f(y)] < f(x) < Inf [£f(z)], then :

yeT, z€T,
g(x) = Sup [£(y)]
yeT,
else, g(x) = £(x)

This transformation can be used to determine the
watersheds of a function. In fact, it is possible to show
that this operation and the process of propagation descri-
bed above are equivalent if the right class of structuring
elements T is used. This class is composed of those struc-

turing elements which preserve the homotopy as described in

[5].

Some examples

These transformations based on the extrema of a
function are very useful in picture segmentation and con-
tour detection. Two examples will be given as an illustra-
tion.

Electrophoresis gels

Bidimensionnal electrophoresis is a powerfull
technique for proteins identification. Proteins can migrate
on a gel according to their molecular weight and their iso -
electrical point (Figure 3).
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Figure 3 : Electrophoresis of proteins

When studying that picture, many elements are of
prime importance, First, the position of the proteins blobs
because this position is the Signature of the protein 3
next, the density of the blob which is closely related to
the activity of the corresponding protein, Then, the neigh-
bourhood relationships between the various blobs 1= inte-
resting when we compare two or more gels of the same
mixture,

Figurea 4 to B explain the entire process, The
minima of the grey-tone function are detected. They corres-
pond to the blobs (Pigure 4).




Figure 4 : Minima of the grey-tone function

Then, the centers of these blobs are computed

(Figure 5).

Figure 5§ 1 Centers of the blohs



In order to compute the contours of the bloba,

a rather complex process is performed : first, we get the

watersheds of the grey-tone image (Figure 6). This trans-
formation provides a good deseription of the neighbourhood
relatlonships between the blobs., Fut it also gives us some
very useful information : we know that the contour of each

blob is somewhere between the watersheds of the grey-tone
image and the minima (Figure 7).

Figure & : Watersheds of the grey-tons image.



Figure 7 :

Partition of the picture. The contours
are betwean the watersheds and the minima,

So, we can now detect the contoura. They are the
watersheds of the gradient function. The trick is here that

the construction of these watersheds is controlled by the
topologleal information available from the watersheds of the
grey-tone funetion. The final result is given on Figure B,
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Figure B : Contours of blobs

We remark that the number of contour lines is
equal to the number of detected bloba, Furthermore, each
contour is closed and has & rather regular shape,

Contours of fractures
22OLOULS 01 iractures

Using watersheds of the gradient function, we
can obtain contours of objeets in complex piletures, Figure
9 and 10 give an example of such g procedure, in order to
detect the contours of facets 4in a S.E.M. image of fractures
in steel,



Figure : S.E.M. image of steel cleavage fracture.

»

Figure 10 : Contour lines of the facets.
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