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Abstract

Object boundaries are generally characterized by grey-level intensity transitions. In or-
der to detect these variations, gradient masks are widely used. In this paper, we survey the
morphological framework of gradient operators. Morphological gradients are based on the
difference between extensive and anti-extensive transformations. For instance dilations and
erosions with structuring elements containing their origin belong to this class of transforma-
tions. Generally, these gradients are used in segmentation applications with edge finders such
as sequential searches, thresholdings or the watershed transformation. The robustness of this
latter transformation allows more tolerance for the construction of a gradient operator. After
a short introduction to gradients in digital images we present the gradients available in mathe-
matical morphology: Beucher’s gradient, internal and external, thick, regularized, directional,
and thinning/thickening gradients. Applicability and performance of each gradient are briefly
evaluated. We then generalize the morphological framework of gradient operators to other
digital spaces.

1 Introduction

Gradient operators are used in segmentation because they enhance intensity variations in images.
These variations are assumed to be edges of objects. This is why gradients are also called “edge
detectors”. We present here the morphological framework of gradient operators.

The most popular gradients are based on linear transformations and template-matching: Pre-
witt [19], Sobel [29], Hueckel [8,9], Compass [22,17], Kirsch [10]... For surveys of these techniques,
see [5,18]. Generalizations to non-linear edge detectors have been carried out by Roberts [21], Lee
and Haralick [13], and Rosenfeld [23,24].

There are many gradients and all of these are potentially useful. From our point of view, this
situation comes from four facts: first, the concept of gradicnt is defined on a continuous basis.
The problem is that digital image analysis is done on a discrete basis, resulting in many different
approximations. Second, gradients enhance high-frequency events in images. These events may
be caused by edges, but are generally caused by noise. We have to improve the S/N ratio before
applying such a detector. Compromises have to be made, leading to different types of optimization
depending on a particular application. Third, the idea of “real” edges is somewhat fuzzy: picture
edges are not necessarily at object boundaries. A canonical definition of an edge is still to be found,
if it exists. The fourth and last reason for the proliferation of edge detectors is caused by a lack of
performance metrics. There are many criteria of performance, some qualitative, some quantitative.
We discuss briefly this problem in section 5.



e

The last step of an edge detection technique consists in finding the enhanced edges in order
to obtain an edge map. Edge maps are generally determined by thresholding the gradient image.
There exist however some algorithms based on heuristic search [15,14]. It gives better results,
but the heuristics and cost functions and starting points and stop criteria have to be defined
with care. These parameters vary from an application to another and may be difficult to set.
Mathematical morphology has a powerful edge finder: the watershed transformation [4,3,1,32,28].
With this transformation, detected edges are always connected and thin since they are defined as
the boundaries of the catchment basins of the minima of the image gradients.

Section 2 presents the morphological framework needed to define a gradient operator. The
basic morphological gradient or Beucher’s gradient is detailed in section 3. Section 4 is devoted to
other classes of morphological gradients: half gradients, thick gradients, the regularized gradient,
directional gradients, thinning/thickening gradients. Applicability and performances of each of these
gradients are studied in section 5. Before concluding, section 6 shows how morphological gradients
can be generalized to other digital spaces such as those defined by graphs, multidimensional images
and vectorial spaces.

2 Definitions

Morphological gradients are operators enhancing variations of pixel intensity in a given neighbour-
hood. In order to do this, we use three different combinations of operators:

e Arithmetic difference between an extensive operator ¢ and an anti-extensive operator :

o(f) = (f).
o Arithmetic difference between an extensive operator ¢ and the original function f: ¢(f) — f.

o Arithmetic difference between the original function f and an anti-extensive operator ¥: f —

P (f)-

An operator ¢ is said to be extensive if and only if:

< e(f),V]. (1)
By duality, v is anti-extensive if and only if:
Y(f) < fVf. (2)

3 Basic Morphological Gradient of Beucher Gradient

We provide the definition of the morphological gradient for functions defined on the continuous
plane. We show that it corresponds to the gradient modulus of the gradient as defined for differen-
tiable functions. We then provide its implementation for discrete images.



3.1 Continuous case

Let f be a differentiable function defined on the Euclidean plane R?. By definition the gradient V
associated to f is the 2D vector of its partial derivatives in two orthogonal directions z; and z,:

af af

Vf= (a—xl, 25" (3)

In the field of image processing, gradients are handled through their modulus and azimuth repre-
sentations rather than through their vector representation. The gradient modulus is thus:

_ [ 9f . 9\,
V5= G+ Oy (4
The azimuth or direction dir of the gradient is:
: 0 0
dir(f) = aretanl( 1)/ (). (5)

The azimuth corresponds also to the direction which maximizes the first directional derivative. If the
directional derivatives are equal to zero for all directions 6 the gradient azimuth is not defined. These
definitions hold for continuous spaces but they cannot be directly applied to discrete images defined
on a subset of the discrete plane Z*. This partly explains the variety of gradients for discrete spaces
as we pointed out in the introduction. We now give the definition of the morphological gradient in
the continuous space R?.

Let f a function defined on R? and pB a disk of radius p. The morphological gradient ¢ of f is

defined as follows: 6.5(f) o)
1 pB — €B
g(f) = lim 5

, (6)

where 6,5(f) and ¢,p(f) are respectively the dilation and the erosion [25] of f with a disk B of
radius p. The morphological gradient is always positive as dilations and erosions — with structuring
elements containing their origin — are respectively extensive and anti-extensive operations. This
gradient is often called Beucher gradient [2].

If f is differentiable, its morphological gradient corresponds to its gradient modulus as defined
in Eq. 4. From Fig. 1, it is clear that we can express the erosion and dilation of f at point z in the
following way:

6f(z) = sup fly) = f(z) + pIV f(z)| + pr(p), (7)
¢pf(e) = inf fly)=f(z) = plVI(z)l+ p'(p)- (8)

v and v’ being error terms tending to zero with p. We have therefore:

o f(2) — €onf(2) = 2p|V ()| + (v(p) — V'(p))- (9)

By neglecting the error term for p tending to zero, we find:

9(z) = [Vf(z)|, QE.D. (10)



X-A X X+A

Figure 1: Graph of a 1d function f and its values along a segment of length 2p centered at z. Note
that tan(a) equals to |V f(z)]. This figure can be generalized to 2D functions by taking a disk of
radius pB as structuring element.

3.2 Discrete case

Equation 6 applies directly to the discrete case but we do not have access to the limit p — 0. The
smallest p accessible for a digital grid is 1. The morphological gradient in the discrete case was
therefore defined by Beucher [2] has the arithmetic difference between the dilated and the eroded
of the image with the elementary structuring element B of the considered grid:

9(f) = é8(f) — en(f). (11)

A discrete morphological gradient on a road scene is shown in Fig. 2.

In Eq. 11, the denominator disappeared because it is now a constant which equals 2. It should
be noted that for finite structuring elements this constant does not directly correspond to a dis-
tance: the minimum and maximum values are not necessarily separated by the diameter of the
neighbourhood. This distance can only be estimated using statistical models of images — if they
are available. ¢(f) represents therefore the maximum variation of the grey level intensities within
an elementary neighbourhood rather than an local slope.

4 Other Morphological Gradients

4.1 Internal and external gradients

In digital images, the thickness of a contour is at least one pixel wide. Moreover, there are differences
between external and internal boundaries of a region. This results in gradient thickness of two pixels
even for sharp transitions as illustrated in Fig. 3b. Internal and external morphological gradients
where tailored to output one-thickness gradients for sharp transitions.

The internal gradient g~ is defined as the difference between the original image and the eroded
image:

o (f) = f — es(f). (12)

The internal gradient enhances internal boundaries of white objects. For binary images, the internal
gradient will provide a mask of the internal boundaries of the objects of the image.

The external gradient g% is defined as the difference between the dilated image and the original
image:

g*(f)=8s(f) - f. (13)



(a) Original image I. (b) Dilated §g(I).

(c) Eroded ep(I). (d) Morphological gradient g(I) = ég(I) — eg(I).

Figure 2: Morphological gradient on a road scene.
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(a) Original 1D signal I. (b) Morphological gradient g(I} = §g(I) — eg(I).

................

I I I

(c) Internal gradient g—(I) = I — eg(I). (d) External gradient gt (I) = 6g(I) - I.

Figure 3: Morphological gradients on a 1D digital signal with sharp transitions between homoge-
neous regions.

The external gradient extracts external boundaries of white objects. In Fig. 3, internal and external
gradients are compared to the morphological gradient.

Internal and external gradients are sometimes called “half gradients”. They are used when thin
contours are needed. The choice between internal or external gradient depends on the nature of
the objects to be extracted. For instance, an external gradient applied on a thin dark structure will
provide a thin edge whereas an internal gradient will give a double edge.

4.2 ‘Thick’ gradients

The discrete morphological gradient is defined on basic morphological operations with an elementary
structuring element (p = 1). Thick gradients g, are defined with structuring elements of size p > 1.

9,(f) = 6,8(f) — €,B(f)- (14)

An example of thick gradient is provided in Fig. 4. Thick gradients give the maximum variation of
the function in a neighbourhood of size p. If the size p is tuned in order to correspond to the width
e of the transition between regions of homogeneous grey level, the thick gradient will give the step
grey level difference h between these regions (see Fig. 5). Thick gradients are at the basis of the
definition of the regularized gradient presented in the next section.

4.3 Regularized gradient

Thick gradients allow to determine grey level steps between homogeneous regions. Thick gradients
have however numerous drawbacks. First they are parametric since the size p must be determined.
Generally this size is unknown and, even worse, is not necessarily constant all over the image frame.
Second, resulting edges are thick and classical edge finding techniques are not well suited for such



(a) ga(1). (b) g10(I).

Figure 4: Thick gradients on the image I of Fig. 2a.
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Figure 5: Profile of the grey levels along the transition between two homogeneous regions.

contours. Finally, homogeneous regions narrower than 2p cannot be segmented with thick gradients.
Beucher [2] proposed a regularized gradient avoiding these drawbacks.

The thickness of contours resulting from a thick gradient of size p can be reduced by eroding
the thick gradient with the disk of size p — 1:

€(o-1)Bl9,(f)]- (15)

The erosion does not allow to recover contours of regions narrower than 2p. Indeed, the gradients
coming from the boundaries of these regions merge and the subsequent erosion will not split them
back (see Fig. 6 and the two parallel white lines in Fig. 4b). This will cause artefacts in the contour
detection step. We propose now a solution to solve this problem. When thick gradients coming
from two distinct boundaries merge, the resulting thickness is larger than 2p. These regions can
be extracted by a morphological top hat of size p. The white top hat transform WTH [16] of a

8,

(a) Original 1D signal f and its eroded and dilated. (b) Thick gradient of f: go(f) = 6,8(f) — ¢pB(f)-

Figure 6: Thick gradient: contour coming from edge A and B have merged.



(a) g¥(I). (b) g*(1).

Figure 7: Regularized gradients on the road scene I of Fig. 2.

function f is defined as the difference of the function with its morphological opening v of size p:

WTH,(f) = f —(f) (16)

The white top hat transformation extracts all bright image regions smaller than 2p. A white top
hat transform can therefore be applied on thick gradients to remove all regions where the gradients
coming from two distinct boundaries have merged. This white top hat transform is followed by an
erosion of size p — 1 to give a thin gradient g} called the parametric regularized gradient of size p:

9,(f) = €(-1B(WT H,g,(f)])- (17)

By using g7, regions larger than 2p are well delineated. The top hat transform has removed all
gradients coming from regions narrower than 2p. Consequently, their contours will not appear in
g,- For a transition of width e as shown in 5, g5 will give a gradient proportional to A if p is
greater to e (until the size of the contoured is exceeded). When applied for all sizes p, g} allows
to determine the thickness of each contour as well as the width of the contoured objects. These
two parameters can be used to organize the contours into a hierarchy. To have an edge map for all
scales, the supremum between the g% for all possible p must be considered:

g (f) = sgp[g;(f)]- (18)

g* is called the non-parametric regularized gradient [2]. Examples of regularized gradients are shown
in Fig. 7.
4.4 Directional gradients

Directional gradients are defined using linear structuring elements. These gradients exhibit sensivity
to different directions in images [11]. We can extract from them the modulus and the azimuth.



(a) Horizontal direction. (b) Vertical direction.

Figure 8: Directional gradients of image I of Fig. 2a.

4.4.1 Modulus

Beucher’s gradient defined in equation 6 can be redefined with linear structuring elements L along
direction a:

9% = ba(f) — era(f), (19)

On digital grids, the number of available directions is finite; on a square grid, it is 2 or 4, depending
if we use the block distance or the chessboard distance. On a hexagonal grid, there are three possible
directions. Morphological directional gradients are illustrated in Fig. 8.

The internal directional gradient ¢g~** and external directional gradient g*® are defined in the
same way as internal and external gradients:

g = f-ea-lf) (20)
g™ (f) = Ga(f) - f. (21)

We may also use “thick” directional gradients of thickness p, by taking pL instead of L as linear
structuring element. In this case, the number of available directions increases at the expense of
operator resolution.

4.4.2 Azimuth

There are two ways to define the azimuth of the gradient. The first corresponds to the arc tangeant
of the directional gradient in the horizontal direction z divided by the directional gradient in the
vertical direction y:

dir(g) = arctan(g”/g"¥). (22)

The other definition is more grid-dependent. It works by computing the gradient modulus in
all grid directions. The direction maximizing the gradient modulus will be assigned to the output.
There may be problems when the maximum gradient is defined for more than one direction. Some
decision rules must be devised in order to remove ambiguities:

e Non-adjacent directions on the grid cancel out each other.



e The remaining adjacent directions are averaged. This will generate directions between pixels
without increasing the size of the neighbourhood.

4.5 Thinning and thickening gradients

Thickenings and thinnings are extensive and anti-extensive operators respectively. There are the
basic operators for a gradient definition. Thinnings and thickenings on functions are defined [25,
page 450] in terms of dilations and erosions. The operations are done with composite structuring

elements T = (T4, 73). The thickening e of f with T is defined:
f.Ta:{ CTl(f) lf‘STz(f)<f§6Tl(f) (23)

f otherwise.

Similarly, the thinning o of f with T is defined:
foT, = { br,(f) i 1,(f) < f < en(f) (24)

f otherwise.

The only useful thinnings/thickenings gradients use directional structuring elements 7, in the
following way:

(foTa) = (foTa). (25)

Internal and external gradients can also be defined using the same principles as shown in sec-
tion 4.1 but are of limited use.

5 Comparing Morphological Gradients

Fram and Deutsch’s [6] experiment is the prototype of gradient evaluation: an artificial image
containing “ideal” edges, and corrupted with increasing amounts of noise. There are questions
associated with this kind of approach: does the test image reflects the reality? Did the “true edges”
move because of the noise?

There are very few theoretical arguments in favor of a given gradient. This is because theoretical
comparisons generally use approximations too crude as compared to real cases. There are mostly
qualitative reasons to choose a particular operator. In this section, we summarize some rules an
expert would use when choosing an operator according to varying aims:

o Noise sensitivity.

e Fine details loss: compromises have to be made in order to have a low noise sensitivity and
conservation of fine details.

e Thin result: It is an important criterion for searching algorithms and thresholdings, less for
watersheds —the divide lines will be at the geometrical center of plateaus forming crestlines.

e Directional information: it depends on an application.

e Black/white symmetry: this criterion comes from the fact that morphological operators behave
asymetrically on image maxima and minima. For instance, external gradients g* will displace
the “edge” to the exterior of a bright object. Fig. 3d illustrates this example.



Gradient noise details thinness direct. symmet. parametric load
Beucher med  med med no yes no low
half gradients | med  small high no no no very low
thick low  large low no yes yes med
regularized low med high no yes no very high
directional med  med med yes yes yes med
thin/thick high  small high yes yes no high

Table 1: Qualitative comparison of morphological gradients according to various criteria.

e Parametric: if some a priori knowledge is available, it is possible to use gradients having in-
trinsic parameters. These concern the shape and size of the structuring elements constructing
the operator.

e Computational load: the choice of gradients is often limited by the computational load they
demand, in particular in real-time applications.

The most frequently used morphological gradient is the Beucher gradient. It is a general-purpose
gradient with good properties of symmetry and a good compromise between thinness and noise
immunity. However, in some applications the result may be too thick and thinner gradients must
be used. Thinning/thickening gradients may be used in such a situation. Half gradients may be
useful because of their thinness and their relative noise immunity. However, they tend to displace
contours, enlarging bright objects for the external gradient and shrinking them for the internal
gradient. This artefact is easy to correct if the intensity of the objects to be contoured with respect
to the background is known. The regularized gradient creates a hierarchy by using a multiscale
approach. The detected contour intensities will depend on the size and the constrast of the regions
on the original image. Significant objects will be retained regardless of their size.

6 Gradients in Other Digital Spaces

All previous sections were dealing with 2D grey level images. We now propose morphological
gradients in some other digital spaces.

6.1 Multidimensional

Images under study are here defined on subsets of Z". All morphological gradients defined for 2D
images apply to nD images. One has just to consider the appropriate structuring element. For
example, Beucher gradient on a 3D image is computed with the approximation of the sphere in
the considered grid. One must however take care of the dimensionality [27,20] of such an operator.
Indeed, if the units of the image space are not homogeneous it is of little physical meaning to
compute a gradient. For instance this is the case for 3D images coming from a temporal series of
2D images. Here, only directional gradients along the temporal axis or along the 2D image plane
are allowed.



6.2 Graphs

A graph consists of a set of nodes linked by a set of vertices. It has already been demonstrated that
morphological operators extend to general graphs [26,30,31]. Beucher gradient, half gradient, and
regularized gradient are therefore suited for computing gradient on graphs. However, directional
and thinnings/thickenings operators are not defined on general graphs and morphological gradients
based on these operators do not extend to this lattice; directional information and shape information
are generally not available from a general graph.

6.3 Multispectral and textural

Multispectral images constitute a lattice where a vector —or a function— of grey level values is
defined for each pixel. This constrasts with a grey-level image where a pixel has a single value.
Morphological operators exist on this lattice. Dilations and erosions are performed on each vector
component separately.

There are many ways to define gradient operators on this lattice. Di Zenzo [34] determined
gradient modulus for each vector component and combined them using different distances. Lee and
Cox [12] considered multispectral images as vector fields and defined a gradient modulus from the
matrix of its partial derivatives

Morphological gradients are constructed with the morphological operators the same way as in
section 3. We have the same problem as Di Zenzo had in order to calculate the modulus: we must
combine the different vector components. This is done by computing distances. There is a great
choice of distances. The most frequently used distance is the Euclidean distance.

Texture descriptors extract statistical or structural [7,33,35] information from a pixel neighbour-
hood. There are presently three approaches to image segmentation: thresholding, edge detection
and region detection. In texture segmentation the contour detection approach is rarely used. This
approach makes use of multispectral gradients.

We propose to use textural descriptors to generate vectorial images. A descriptor is generally
applied over regions in images. In this approach, we apply them on sliding windows. The center
of such windows is a textural vector. Edge-oriented texture segmentation can be achieved with
vectorial gradients.

Figure 9 illustrates this. The original image has two regions of same average value. Only
orientation 1s different. We used for texture descriptors the average output of directional openings
in a square sliding window. We performed edge detection with Beucher gradient g;(f) on each

component separately. The modulus was calculated with the Euclidean distance: /3> %(g:(f))?.
After gradient modulus filtering, we performed a watershed transformation, giving the segmented
image in the figure 9. '

7 Conclusion

Object boundaries are often characterized by grey-level intensity transitions. In order to detect these
variations, gradient masks are widely used. The morphological approach to gradients consists in
determining a grey level variation within a given neighbourhood using extensive and anti-extensive
operators. A menagery of morphological gradients have been presented, each gradient correspond-
ing to a particular model of grey level transitions along object boundaries. The applicability of



(a) Original image. (b) Segmented image.

Figure 9: Texture segmentation using vector gradients.

all these gradients have been evaluated. Morphological gradients are not necessarily better than
other gradients. The performances of a gradient depend on an application and must be tested
on it. Morphological gradients should therefore be considered as a possible alternative to classical
gradients.
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