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Chapter 1

Introduction

Most materials used in contemporary life and industry are heterogeneous
and exhibit a complex internal microstructure. The microstructure is a key
feature of the global material, which largely determines most of its physical
properties at the macroscopic level [35].

From an experimental perspective, one of the most efficient way to study
microstructures of heterogenenous media is to rely on images obtained with
experimental techniques including tomography or microscopy. Images pro-
vide a large amount of information on the studied microstructures and there-
fore require sophisticated image processing and statistical tools to be pro-
cessed. The first step of the processing aims at developing segmentation
algorithms to properly identify the micro-structure components. Measure-
ments can next be defined and applied on the segmented images. Thus,
starting from experimental images, one obtains a description of the studied
microstructure through geometrical features that aggregate its main geomet-
rical characteristics.

Conversely, one is often interested in generating random microstructures
that reproduce accurately some geometrical features of the original material.
The simulated microstructures can in turn serve as a basis to investigate the
physical or mechanical properties of heterogeneous materials through exten-
sive numerical simulations. This approach is of interest to better understand
the influence of the microstructure on the physical properties of the material
at the macroscopic scale.
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2 CHAPTER 1. INTRODUCTION

Mathematical morphology and stochastic geometry provide efficient tools
for both analysis and simulation of heterogeneous microstructures. In this
introduction, our goal is to provide a brief overview of these research fields.

1.1 Experimental image segmentation and math-

ematical morphology

When exploiting experimental images of heterogeneous materials, we first
have to properly perform their segmentation. The segmentation consists in
identifying and labelling all components of the microstructure. Mathemati-
cal morphology provides very efficient tools to perform this task.

Mathematical morphology is a theory for the analysis and processing of
geometrical structures based on set theory and topology. Mathematical mor-
phology finds most of its applications in the field of image processing and
random structures simulation. The basic idea behind mathematical morphol-
ogy is to analyze a set A of some topological space E by probing it with a
compact set K, classicaly referred to as structuring element. Hence, mathe-
matical morphology makes extensive use of classical operators of set theory,
including for instance union or intersection.

The basic operators of mathematical morphology are dilation and erosion,
which are defined in the following manner. Let A be a subset of Rn. The
dilated of the set A by the structuring element K is the set

A⊕K = {x ∈ Rn|Kx ∩ A 6= ∅}, (1.1)

where Kx is the translated of the compact K at x ∈ E. Similarly, the eroded
of the set A by the structuring element K is the set

A	K = {x ∈ Rn|Kx ⊂ A}. (1.2)

Dilation and erosion are dual operators with respect to the complement, in
the sense that dilating the set A by the structuring element K is equivalent
to erode Ac by K.

Dilation and erosion can be seen as the fundamental bricks of mathemat-
ical morphology, from which derive almost all other operators. For instance,
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by combining erosion and dilation, we can define two new morphological op-
erators. Let A,B be subsets of E. The closing AB and the opening AB of
the set A by B are defined as follows:

AB = (A⊕ B̌)	B, (1.3)

and

AB = (A	 B̌)⊕B. (1.4)

More complicated operators can be defined to handle most low-level image
processing tasks including denoising or pre-processing for segmentation.

Mathematical morphology also provide efficient techniques to perform im-
age segmentation. Among these techniques, the most popular is the water-
shed algorithm, which has been applied in numerous case studies to perform
material images segmentation. We introduce the key concepts of mathe-
matical morphology in chapter 2. We refer the reader interested by a more
extensive presentation of the theory to the books of Serra [33] and Soille [34].

1.2 Random set theory

Once segmented, the microstructure images still carry a huge amount of in-
formation. As a consequence, we need to develop mathematical techniques
to capture the main features of the complex geometry under scrutiny. Math-
ematical set theory proves very useful in this regards. For instance, a natural
way to describe inclusions in a matrix is to consider a set A, representing
the included particles, and its complementary set Ac, representing the ma-
trix. The study of such models falls into the scope of stochastic geometry.
Stochastic geometry is a mathematical discipline which aims at providing a
systematic description of random spatial patterns and whose development is
intimately correlated to the one of mathematical morphology. The theory of
random closed sets will be discussed in more details in chapter 2.

Let’s go back to our previous example of inclusions in a matrix. As men-
tioned previously, to study the obtained sets, the idea behind mathematical
morphology is to define a structuring element K (e.g a point, or a disk with
some given diameter) and to use it to probe the subsets A and Ac. The sim-
plest relations that one can build to study A and Ac are the following ones:
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at a given point of the porous media, either the structuring element K hits
the set A or it is disjoint from it. At each point, the knowledge of wheter
or not some structuring element K hits a set A is sufficient to completely
characterize A.

The deterministic approach exposed here proves however untrackable in
practice. Obviously, processing each one of the microstructures constitut-
ing heterogeneous media is generally out of scope, since this would involve
a considerable amount of data. However, considering the limited amount of
information available on the material, it is interesting to rely on a statisti-
cal approach. From this perspective, instead of determining at each point if
some structuring element intersects A, we will try to estimate the probabil-
ity that the considered structuring element intersects A. A benefit of this
approach is that we can determine statistical laws on experimental samples
and generalize these laws to larger portions of the same material as long as
the samples are statistically relevant.

In this framework, the set A representing the solid phase becomes com-
pletely characterized by the functional T (K) defined for all structuring ele-
ment K by

T (K) = P{A ∩K 6= ∅} = 1− P{K ∩ Ac}. (1.5)

T (K) is called the Choquet capacity of the random closed set A. Note that
the Choquet capacity is closely related to dilation and erosion operators. For
all compact set K ⊂ Rn, we have indeed

T (K) = P{K ∩ A 6= ∅} = P{x ∈ A⊕ Ǩ} (1.6)

Through the Choquet capacity, mathematical morphology provides a
solid mathematical framework to investigate the microstructure geometry.
Since each compact set K brings its own information of the studied set A,
the choice of structuring element allows one to conduct very specific statis-
tical measurements on the random set A. For instance, if one chooses K to
be a single point, the choquet capacity yieds

T ({x}) = P{{x} ∩ A 6= ∅} = P{x ∈ A}, (1.7)

which is the spatial law of the set A. Similarly, if one chooses K to be the
set {x, x+ h}, the choquet capacity allows to calculate the covariance of the
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random closed set.

T ({x, x+ h}) = P{x ∈ A, x+ h ∈ A}. (1.8)

The covariance of the set A at a given point x and for a distance h is the
probability that x and x+ h both belong to A. The covariance CA provides
useful information about the spatial arrangement of the random set A. In
particular, it accounts for the presence of several scales in the studied set or
for periodicity.

1.3 Random models for heterogeneous media

Mathematical morphology allows to analyse images of materials microstruc-
tures and to extract statistical features which characterize the microstructure
in a very simple manner. Conversely, one is often interested in developing
stochastic models of the microstructure that reproduce accurately some ge-
ometrical features of the original material.

The basic ingredients of stochastic geometry models are random point
processes. A random point process P is a collection of random points of the
space Rd. A particular role is played by Poisson point processes. Let θ > 0
be a positive real number. A Poisson point process on Rd is a point process
such that the number N(K) of points contained in any region K of Rd is a
Poisson random variable with intensity θ:

P{N(K) = k} =
θ(K)k

k!
exp(−θ(K)). (1.9)

Hence, adopting the point of view of mathematical morphology, we can gen-
erate a Poisson point process in a domain Ω of Rd by exploring Ω with a
compact structuring element K and implanting a random number of points
following the probability law (1.9) at each location. A general theory for
random point processes is exposed in chapter 3.

Most classical models of stochastic geometry rely on Poisson point pro-
cesses. An archetypal model is for instance the Boolean model, which is
discussed in details in chapter 4. The Boolean model is a grain model which
is obtained by implanting random primary grains A′ on the germs {xk} of
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a Poisson points process P with intensity θ. Note that primary grains can
possibly overlap. The resulting set A is

A = ∪xk∈PA′xk , (1.10)

where A′xk denotes the translated of the primary grain A′ at point xk:

A′xk = {xk + y, y ∈ A′}. (1.11)

Any shape can be used for the grain A′, including convex, non-convex or
even non connected sets.

Interestingly, the Boolean model is trackable analytically. Hence, one can
easily prove that the number N(K) of primary grains intersected by any
compact region K follows a Poisson distribution of parameter θµ̄(Ǎ′ ⊕K):

P{N = n} =
θnµ̄(Ǎ′ ⊕K)n

n!
exp(−θµ̄(Ǎ′ ⊕K))}. (1.12)

In this expression, µ̄(Ǎ′ ⊕ K) denotes the average Lebesgue measure (the
average surface in R2 or the average volume in R3) of a primary grain A′

dilated by the compact set K. This result guarantees that the number of
primary grains in any bounded window remains almost surely finite, and
enables us to calculate the Choquet capacity of the boolean model

T (K) = 1− exp(−θµ̄(Ǎ′ ⊕K)). (1.13)

Knowing an analytical expression for the Choquet capacity, we can easily
determine the covariance of the Boolean model that yields

C(h) = P{x ∈ A, x+ h ∈ A} = 1− exp(−θµ̄(Ǎ⊕ lh)), (1.14)

where lh denotes the structuring element constituted by both points 0 and
h, h being some vector of Rn.

Several models have been developed over the years that rely on simi-
lar approaches, including the dead leave model, Poisson flat processes or
Boolean random functions. We elaborate on these models in chapters 5, 6,
respectively. Other models have been specifically designed to simulate mi-
crostructures of crystals, which notably include Voronöı and Johnson-Mehl
tessellations. The rather difficult study of these models is the object of chap-
ter 6.
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Figure 1.1: Fe-Ag composite microstructure. The microstructure can be
modeled by a Boolean model of spheres (see Chapter 4). This illustration is
taken from the lecture notes of Jeulin [12]

Figure 1.2: Polycristal microstructure. The microstructure can be modeled
by a random tessellation of R2 (see Chapter 5). This illustration is taken
from the lecture notes of Jeulin [12]
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Theory
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Chapter 2

Fundamentals of random set
theory

2.1 Introduction

The study of heterogeneous media can easily be formalized through mathe-
matical set theory. For instance, a natural way to describe a porous media is
to consider the union of a set A representing the solid component and of its
complement Ac representing the porous network. Similarly, inclusions in a
matrix can be described by a set A, representing the included particles, and
its complementary set Ac, representing the matrix.

To study the obtained sets, the idea behind mathematical morphology is
to define a structuring element K and to use it to probe the subsets A and
Ac. The simplest relations that one can build to study A and Ac are the
following ones: at a given point of the porous media, either the structuring
element K hits the set A or it is disjoint from it i.e included in the comple-
mentary set. At each point, the knowledge of wheter or not some structuring
element K hits a set A is sufficient to completely characterize A. Moreover,
relying on intersection, one can define a complete topology on the set P(E)
of all subsets of E. We elaborate on this topic in appendix A1.

The deterministic approach exposed here proves however difficult. Obvi-
ously, studying each one of the microstructures constituting heterogeneous
media is generally out of scope, since this would require processing a consid-

11
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erable amount of data. Therefore, it is often interesting to adopt a statistical
approach. From this perspective, at a given point, the information is not
anymore wheter or not some structuring element hits the set A but the prob-
ability that this structuring element hits A.

A benefit of this approach is that statistical laws can be determined on
experimental samples providing us with partial knowledge of the microstruc-
ture. This opens the way to the development of predictive models aimed at
simulating random structures. Such models have been successfully used to
simulate microstructures of a wide range of media and textures. Dispersions
of small particles in a matrix can for instance be modelled by realizations of
stochastic point processes (see Chapter 3). Similarly, multiphase media can
be simulated by multicomponent random sets.

2.2 Facts from mathematical morphology

Mathematical morphology is a theory for the analysis and processing of geo-
metrical structures. It is most commonly applied to digital images, but it can
be employed as well on graphs, surface meshes, solids, and many other spatial
structures. Random sets theory makes an extensive use of the concepts of
mathematical morphology. It is therefore natural to start this introduction
with some concepts of mathematical morphology.

2.2.1 Dilation and erosion

The basic idea behind mathematical morphology is to analyse a set A of
some topological space E by probing it with a compact set K (structuring
element). Hence, mathematical morphology makes extensive use of classical
operators of set theory, including for instance union or intersection. We first
introduce the two basics bricks of mathematical morphology, namely erosion
and dilation.

Definition 2.2.1 Let A be a closed set in E. The dilated of the set A by the
structuring element K is the set

DK(A) = {x ∈ E|Kx ∩ A 6= ∅}, (2.1)
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where Kx is the translated of the compact K at x ∈ E. Similarly, the eroded
of the set A by the structuring element K is the set

EK(A) = {x ∈ E|Kx ⊂ A}. (2.2)

Dilation and erosion are dual operators with respect to the complement, in
the sense that dilating the set A by the structuring element K is equivalent
to erode Ac by K.

We assume now that E is the euclidean space Rd of dimension d. The
vectorial space structure of Rd allows us to define new operations on P(Rd),
namely the Minkowski addition and substraction.

Definition 2.2.2 Let A and B be subsets of Rd. The Minkowski addition is
defined by

A⊕B = {a+ b, a ∈ A, b ∈ B} (2.3)

The Minkowski addition is an associative and commutative operation. Note
that (P(Rd),⊕) is an abelian semi-group, whose neutral element is {0}.

We introduce some notations at this point. Let x be a point of Rd. We
denote by Ax the set A translated at point x:

Ax = A⊕ {x}. (2.4)

Similarly, we denote by B̌ the symetric set of B ∈ P(E) defined by

B̌ = {−x, x ∈ B} (2.5)

Definition 2.2.3 Using these notations, we can define the Minkowski sub-
straction by duality. Let A and B be subsets of E. The Minkowski substrac-
tion is defined by

A	B = (Ac ⊕B)c = ∩x∈BAx (2.6)

We can also express the classical dilation and erosion operators of mathe-
matical morphology as functions of the Minkowski addition and substraction
respectively.

Definition 2.2.4 Let A and B be subsets of Rd. The erosion of A by B
yields the set

{x ∈ E,Bx ∈ A} = A	 B̌. (2.7)
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Similarly, we can check by duality that the dilation of A by B yields the set

{x ∈ E,Bx ∩ A 6= ø} = A⊕ B̌. (2.8)

Problem 2.2.1 Let A,B ∈ P(Rd) be subsets of Rd, and K, K1, K2 be
compact sets of K(Rd). Show that

(A	 Ǩ1)	 Ǩ2 = A	 (Ǩ1 ⊕ Ǩ2), (2.9)

(A ∩B)	 Ǩ = (A	 Ǩ) ∩ (B 	 Ǩ), (2.10)

and
A⊕ (Ǩ1 ∪ Ǩ2) = (A⊕ Ǩ1) ∪ (A⊕ Ǩ2). (2.11)

Problem 2.2.2 Let A ∈ P(Rd) be a subset of Rd, and K be a compact set
of K(Rd).
1. Show that if A is convex, then A	 Ǩ is convex.
2. If A is convex, under which assumption is A⊕ Ǩ convex?

2.2.2 Opening and closing

By combining erosion and dilation, we can define two new morphological
operators. Let A,B ∈ P(E) be subsets of E. The closing AB and the
opening AB of the set A by B are defined as follows:

AB = (A⊕ B̌)	B, (2.12)

and
AB = (A	 B̌)⊕B. (2.13)

The opening and closing operators are widely used in mathematical morphol-
ogy. These operator can for instance be used to perform image denoising and
are the fundamental bricks upon which builds most of the theory.

2.2.3 Granulometry

A first application of openings and closings related to the description of
random sets are the granulometry operators. Intuitively, a granulometry by
closing (resp. by opening) is a family of closing (resp. opening) of increasing
sizes which allows us to characterize the size distribution of the connected
components of any random set.
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Figure 2.1: Segmented image of some microstructure simulated with the
software VtkSim [7] with a Boolean model of spheres.

Figure 2.2: Erosion (left) and dilation (right) of the segmented image with
a disk of radius one pixel. Erosion removes the smallest components of the
microstructure.
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Figure 2.3: Opening (left) and closing (right) of the segmented image with a
disk of radius one pixel.

Definition 2.2.5 More formally, a granulometry is a family of set operators
Φλ depending on a positive parameter λ satisfying the following properties:
i) For all A in F(E), Φλ(A) ⊂ A: Φλ is anti-extensive.
ii) If A ⊂ B, then Φλ(A) ⊂ Φλ(B): Φλ is increasing.
ii) Φλ ◦ Φµ = Φµ ◦ Φλ = Φmax(µ,λ)

The axiomatic of granulometries was first formulated by Matheron in [20].
Note that an immediate consequence of the last point of the definition is that
Φλ is necessarily an idempotent operator, in the sense that Φλ ◦ Φλ = Φλ.

As stated above, the axiomatic of granulometries remains very general.
In practice, we will often consider granulometries relying on a familly of
openings. Let K be a convex set. We consider the family {Kλ, λ > 0},
where Kλ = λK. The operator

Φλ(A) = (A	 Ǩλ)⊕Kλ, (2.14)

defined for all closed set A of F(E), is a granulometry. For a random set A,
a granulometry by openings describes the size distribution of the elements of
A by opening by convex sets.
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In a similar manner, we can define a granulometry by closing. To that
end, we consider the operator

Φλ(A) = (A⊕ Ǩλ)	Kλ, (2.15)

defined for all closed set A of F(E). A granulometry by closing describes the
size distribution of the elements of A by closing by convex sets.

2.3 Probabilistic approach and Choquet ca-

pacity

Concepts of mathematical morphology prove very convenient to study ran-
dom sets. In particular, it is of interest to translate some compact set K in
an observation window to analyse a random closed set A of Rn. Two elemen-
tary events can occur: if K ∩ A = ∅, the structuring element K is disjoint
from A; otherwise, if K ∩ A 6= ∅, the structuring element K hits the set A.
The random closed set A is completely characterized by the functional T (K)
defined for all compact sets K by

T (K) = P{A ∩K 6= ∅} = 1− P{K ∩ Ac} = 1−Q(K) (2.16)

T (K) is called the Choquet capacity of the random closed set A. Note that
the Choquet capacity is closely related to dilation and erosion operators. For
all compact set K ⊂ Rn, we have indeed

T (K) = P{K ∩ A 6= ∅} = P{x ∈ A⊕ Ǩ} (2.17)

Problem 2.3.1 Show that

Q(K) = P{K ⊂ Ac} = P{x ∈ Ac 	 Ǩ}. (2.18)

The structuring element K can be a single point {x} of Rn or any compact
set of Rn. However, we have to insist on the fact that the choice of struc-
turing element is fundamental. Each compact set K indeed brings its own
information on the studied set A. For instance, if one chooses K to be a
single point, the choquet capacity yieds

T ({x}) = P{{x} ∩ A 6= ∅} = P{x ∈ A}, (2.19)
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which is the spatial law of the set A. Similarly, if one chooses K to be the
set {x, x+ h}, the choquet capacity allows to calculate the covariance of the
random closed set.

T ({x, x+ h}) = P{x ∈ A, x+ h ∈ A}. (2.20)

2.3.1 Covariance

The covariance is a - if not the - fundamental tool to describe spatial ar-
rangement in a random closed set.

Definition 2.3.1 The covariance of a random set A ⊂ Rn is the function
CA defined on Rn × Rn by

CA(x, x+ h) = P{x ∈ A, x+ h ∈ A}, (2.21)

where h is some vector of Rn.

The covariance of the set A at a given point x and for a distance h is the
probability that x and x + h both belong to A. Note that for a stationary
random set, the covariance is a function of the distance h only:

CA(x, x+ h) = CA(h). (2.22)

If in addition the set A is ergodic, the covariance C(h) can be estimated from
the volume fraction of A ∩ A−h to be

CA(h) = P{x ∈ A ∩ A−h} = V (A ∩ A−h) = V (A	 ȟ), (2.23)

where h is the set {x, x+h}. In practice, the covariance is usually estimated
from experimental samples of the studied random set using equation (2.23).

The covariance CA provides useful information about the spatial arrange-
ment of the random set A. In particular, it accounts for the presence of
several scales in the studied set or for periodicity. Note that by definition,
CA(0) simply corresponds to the volumic fraction of the set A. For any ori-
entation, the covariance C(h) reaches a sill at the distance or range h∞. At
this distance, events {x ∈ A} and {x+ h∞} are independent and we have

CA(h∞) = p2, (2.24)
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. These considerations enable us to define a normalized version of the covari-
ance that remains between 0 and 1:

γ(h) =
C(h)− p2

p(1− p)
. (2.25)

For an ergodic experimental sample, the covariance can be estimated with
relation (2.23). An alternative approach is to use the Fourier transform, as
demonstrated in the following problem.

Problem 2.3.2 Let A be a subset of Rd. Show that the covariance of A is

CA(h) =
1

(2π)n

∫
Rn
|f̂(ξ)|2 exp(iξh)dξ. (2.26)

The covariance of a random set A generally depends on the orientation
of the vector h. The isotropised covariance is defined to be

C̄(h) =

∫
Sd−1

C(hu)U(du), (2.27)

where u is an unitary vector and U(du) denotes the uniform distribution on
the unit sphere Sd−1.

Some features of the covariance can easily be expressed analytically. A
fundamental example is given by its first derivative.

Proposition 2.3.3 Let A be a random set on Rd. Then, the first derivative
of the covariance is

d

dh
CA(hu) = − lim

h→0
νd−1((K ∩Kru)|u⊥), (2.28)

where νd−1 is the Lebesgue measure on Rd−1 and u is some unit vector. (K ∩
Kru)|u⊥ denotes the projection of (K ∩Kru) on the hyperplane that has u as
normal vector.

When d = 3, for the isotropic case, equation (2.28) simply yields

dCA
dh

(0) = −S(A), (2.29)

where S(A) is the surface area of the set A in R3. Similarly, when d = 2,
equation (2.28) yields

dCA
dh

(0) = −P(A), (2.30)

where P(A) is the length of the perimeter of A in R2.
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Figure 2.4: Random realization B of a Boolean model of spheres of constant
radius (see chapter 3), obtained with the software VtkSim [?].

Figure 2.5: Set covariance (left) and cumulative granulometry by opening
(right) of the set B.
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2.4 Measurements on random sets

Starting from a material image, it is possible to measure a countless number
of parameters. It is however essential for these parameters to be significant
regarding the physics and the geometry of the material. Two families of pa-
rameters are usually considered, namely metric and topological parameters.
Intuitively, if we consider inclusions in a matrix, we can be interested in
knowing the volume fraction of inclusions. This parameter is metric, in the
sense that it is directly obtained by a measurement. Conversely, we could
also be interested in knowing the number of included particles. This param-
eter is topological, in the sense that it is obtained by counting.

In practice, strict limitations are imposed on the measurements. First,
one obviously wants the measurement to be isometry-invariant. It is indeed
important to ensure that a measurement conducted on a set X is independent
from the location of the set X. An homogeneity condition must also be
satisfied. If a measurement is conducted at different scales on the same set
X, one obviously want to get the same results. This conditions yields, for
some measurement W ,

W (λX) = λdW (X), (2.31)

where d ∈ N and λ > 0. An additional requirement is for the measurement
to be additive. In mathematical terms, this condition is expressed through
the relation

W (X) +W (Y ) = W (X ∪ U) +W (W ∩ Y ). (2.32)

A final requirement is for the measurement to be continuous. A small defor-
mation of the measured set cannot result in large fluctuations of the mea-
surements.

Finite union of convex sets play a key role in stochastic geometry. Most of
the geometrical theory of random builds upon results obtained for convex sets
and on their generalization on finite unions of convex sets. A fundamental re-
sult states that all measurements satisfying the conditions enumerated above
can be expressed as a linear combination of a finite number of functionals,
referred to as Minkowski’s functionals.
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2.4.1 Minkowski functionals and intrinsic volumes

Definition 2.4.1 A subset C of Rd is said to be convex if for every pair of
points x, y in C and every c ∈ [0, 1], we have cx+ (1− c)y ∈ C.

Affine linear subspaces are archetypal examples of convex sets. An affine
linear subspace L is indeed characterized by the property that for all points
x, y ∈ L, cx + (1 − c)y ∈ L for all c ∈ R. An affine linear subspace of
dimension k of Rd is defined by the implicit equation

{x ∈ Rd, c0 + c1x1 + c2x2 + ...+ ckxk = 0,
k∑
i

ci = 1}, (2.33)

where ci ∈ R for all i. k-dimensional affine linear subspaces are referred to
as k−flats or k−planes.

Definition 2.4.2 We call convex bodie any compact convex subset of Rd,
and we denote by C(Rd) the system of all convex bodies of the d-dimensional
euclidean space Rd.

Definition 2.4.3 A convex body functional is a functional h defined on
C(Rd) which assigns a real value h(C) to each C ∈ C(Rd). A convex body
functional is said to be:
- isometry-invariant if for all isometry G, we have h(GC) = h(C).
- monotone if C1 ⊂ C2 implies h(C1) ≤ h(C2).
- C-additive if for all pairs of convex bodies C1, C2 satisfying C1∪C2 ∈ C(Rd),
we have h(C1) + h(C2) = h(C1 ∪ C2) + h(C1 ∩ C2).

A fundamental theorem of integral geometry states that all convex body
functional that are isometry-invariant, monotone and C−additive can be
expressed as linear combinations of the Minkowski functionals Wd. The
Minkowski functionals are isometry-invariant, monotone, C-additive convex
body functionals, defined directly on C(Rd) by the formula

Wk(C) =
bd
bd−k

∫
Lk

µd−k(C|E⊥)Uk(dE). (2.34)

In this expression, bk denotes is the volume of the unit ball in Rk. µk is the
k-dimensional Lebesgue measure. Lk is the set of all k-subspaces, C|E⊥ is the



2.4. MEASUREMENTS ON RANDOM SETS 23

orthogonal projection of the convex body C on E⊥, E⊥ is the (d−k)-subspace
orthogonal to E ∈ Lk, and Uk is the uniform probability distribution on Lk.

∀d > 0, for k = 0, equation (2.34) becomes

W0(C) =

∫
L0

µd(C|E⊥)U0(dE) = µd(C). (2.35)

Hence, W0(C) is equal to the volume µd(C).
Similarly, ∀d > 0, for k = d, we find

Wd(C) = bd (2.36)

Theorem 2.4.1 Every non-negative, motion invariant, monotone, C−additive
convex body functional h on C(Rd) can be expressed as a linear combination
of the Minkowski functionals.

h(C) =
d∑

k=0

Wk(C), C ∈ C(Rd). (2.37)

This result is know as Hadwiger’s characterization theorem.

In the particular cases of d = 1, 2, 3, Minkowski functionals yield

d = 1 W0(C) = L(C), W1(C) = 2

d = 2 W0(C) = A(C), W1(C) =
L(C)

2
,

W2(C) = π

d = 3 W0(C) = V(C), W1(C) =
S(C)

3
,

W2(C) =
M(C)

3
, W3(C) =

4π

3
,

where
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- L(C) is the length of the convex body C when d = 1,

- A(C) is the area of the convex body C when d = 2,

- V(C) is the volume of the convex body C when d = 3,

- L(C) is the boundary length of the convex body C when d = 2,

- S(C) is the surface area of the convex body C when d = 3.

When d = 3, the quantity M(C) is defined as the integral of mean curvature.
It is defined by

M(C) =

∫
∂C

m(x)dS, (2.38)

where

m(x) =
1

2

(
1

R1

+
1

R2

)
(2.39)

is the mean curvature at location x of the surface.

Some authors prefer relying on an equivalent family of functionals, namely
the intrisic volumes, rather than on Minkowski functionals. Intrinsic volumes
are non-negative, motion invariant, monotone, C−additive convex body func-
tional on C(Rd) that are related to the Minkowski functionals Wk through
the relation

bd−kVk(C) =

(
d

k

)
Wd−k(K), (2.40)

for k = 0, 1, .., d. In the particular cases of d = 1, 2, 3, intrinsic volumes yield
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d = 1 V0(C) = 1, V1(C) = L(C)

d = 2 V0(C) = 1, V1(C) =
L(C)

2
,

V2(C) = A(C)

d = 3 V0(C) = 1, V1(C) =
M(C)

π
,

V2(C) =
S(C)

2
, W3(C) = V(C).

2.4.2 Steiner formulae

Convex geometry is intimately correlated to mathematical morphology. In
particular, Steiner formulae provide a useful tool to express the volume of
a convex body C dilated by a ball of finite radius r > 0 in terms of the
Minkowski functionals of C.

Definition 2.4.4 Let A be a set in Rd. The parallel set of distance r of A
is the set A⊕r = A⊕B(0, r).

Let C be a convex body in Rd. The following fundamental result allows us to
calculate the volume of the parallel convex body of distance r of C knowing
the Minkowski functionals of C.

Theorem 2.4.2 Let C be in C(Rd) and r > 0. We have:

µd(C ⊕B(0, r)) =
d∑

k=0

(
d

k

)
Wk(C)rk. (2.41)

This formula is classicaly referred to as Steiner formula. Similarly, with the
intrinsic volumes, we obtain:

µd(C ⊕B(0, r)) =
d∑

k=0

bd−kVk(C)rd−k, (2.42)

where bd−k is the volume of the unit ball of Rd−k.
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2.4.3 Stereology and Crofton formulae

We must keep in mind the fact that an image is often the bidimensional rep-
resentation of a tridimensional microstructure. Therefore, we will often have
to estimate metric or topological parameters in R3 from parameters measured
in R2. A parameter is said to be stereological if it can be used in this purpose.

An important result in stereology is given by the Crofton formula, which
allows us to calculate the intrinsic volumes for intersections of convex bodies
with flats. We refer the reader interested by more details on stereology to
the books of Stoyan, Kendall and Mecke [4] and Schneider and Weil [32].

2.5 Notes

This chapter provides a short introduction to basic concepts in stochastic
geometry, integral geometry and mathematical morphology. More extensive
introductions can be found in the treaty of Matheron published in 1975 [20] or
in the more recent book of Stoyan, Kendall and Mecke [4]. Integral geometry
is covered in depth in the book of Schneider and Weil [32]. The lecture notes
of Jeulin [12] are another useful reference for the material covered in this
chapter.
Mathematical morphology is treated in depth in the books of Serra [33],
Soille [?] or Coster and Chermant [6] (in French).



Chapter 3

Point processes

In this chapter, we present the general theory of random point processes. A
random point process P is a collection of random points. Point processes can
be considered as the basic ingredients of stochastic geometry. A particular
role is played by Poisson point processes in the d-dimensional space Rd.

In section 3.1, we introduce a general framework for the study of point
processes. We study more specifically Poisson point processes in section 3.2.
Marked point processes are then discussed in section 3.3.

3.1 General theory

In this section, we introduce a general framework for the study of point pro-
cesses on locally compact topological spaces. The results of this section are
technical and we will only state the most relevant ones, often without proof.
We refer the reader to the reference textbooks of Weil and Schneider [32] and
Stoyan et al. [4] for a more extensive presentation.

3.1.1 Random point processes as counting measures

Let E be a locally compact space with a countable topological basis. We
denote by B(E) the Borel σ-algebra of E. Let M(E) be the set of all locally
finite measures defined on E. Recall that a measure η is said to be locally
finite if for all compact C in K(E), η(C) < ∞. For all borelian set A in
B(E), we define the evaluation map

ΦA : M → R ∪ {∞}. (3.1)

27



28 CHAPTER 3. POINT PROCESSES

When equipped with the σ-algebra M generated by all evaluation maps
{ΦA, A ∈ B(E)}, M(E) forms a measurable space.

A class of measures of particular interest for the study of point processes
is provided by the counting measures.

Definition 3.1.1 A counting measure on E is a measure η in M(E) such
that for all borelian set A in B(A), η(A) ∈ N ∪ {∞}. We denote by N(E)
the set of all counting measures on E.

It can be shown that N(E) is a measurable subset of (M(E),M) [32].
We denote by N the corresponding σ-algebra. A fundamental example of
counting measure is given by locally finite sums of Dirac measures:

η =
n∑
k=1

δxk . (3.2)

Another example is given by random Poisson counting measures. For all
borelien set A of Rd, a random Poisson counting measure follows a Poisson
distribution given by

η(A) =
Θ(A)k

k!
exp(−Θ(A)), (3.3)

where Θ is some(real) measure on the σ-algebra B(Rd).

Point processes can be apprehended either as random sets of discrete
points or as random counting measures giving the number of points contained
in any domain of E. For a counting measure η ∈ N(E), the support supp η
is the smallest closed set A in E such that η(E/A) = 0. The mapping η →
supp η identifies a random measure to its corresponding point process. As
alluded to earlier, the set of all locally finite measures on E can be equipped
with a σ-algebra. This consideration enables us to define a probability law
on M(E).

Definition 3.1.2 A random measure X on E is a measurable map from
some probability space {Ω, A,P} into the measurable space {M(E),M}. The
image measure PX is the distribution of X.



3.1. GENERAL THEORY 29

For a random measure X which is almost surely concentrated on N(E),
since N(E) is a measurable subset of M(E), supp X is a random point
process on E. Its distribution is defined for all Y ∈ N by the probabilities

P (Y ) = P{X ∈ Y } = P{ω ∈ Ω, X(ω) ∈ Y }. (3.4)

The finite-dimensional distributions are of particular interest. They are de-
fined for any family {B1, B2, .., Bk} of bounded Borel sets of E to be the
probabilities

P{X(B1) = n1, .., X(Bk) = nk}, (3.5)

where n1, .., nk are positive integers.

3.1.2 Intensity measure

From now on, we will assume E to be the d-dimensional Euclidean space Rd.

Definition 3.1.3 The intensity of the random measure X is the measure on
Rd defined for all borelian set A in B(Rd) by

Θ(A) = E[X(A)]. (3.6)

The intensity measure of a random point process can be seen as the equivalent
of the mean of a real-valued random variable. It is of interest to consider
the particular case of a stationary point process. A point process is said to
be stationary if its distribution is invariant by translation. Hence, for any
configuration Y in N and for x ∈ Rd, we have

P{X ∈ Y } = P{X + x ∈ Y }.
For a stationary point process, the intensity measure is necessarily translation-
invariant. It implies that

θ(B) = λµD(B), (3.7)

where µD is the d-dimensional Lebesgue measure on Rd and λ some positive
real number.

We conclude this section by stating the Campbell theorem, whose proof
is left as exercise.

Theorem 3.1.1 Let X be a random measure on E with intensity measure
Θ, and let f : E → R be a non-negative, measurable function. Then, we have

E
[ ∫

E

fdX

]
=

∫
E

fdΘ. (3.8)
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3.2 Poisson point process

3.2.1 Definition and characterization

Definition 3.2.1 Let θ be a locally finite measure on Rd. A Poisson point
process on Rd is a point process such that the number N(K) of points con-
tained in any compact K of Rd is a Poisson random variable with parameter
θ(K):

P{N(K) = k} = pk(K) =
θ(K)k

k!
exp(−θ(K)), (3.9)

where the intensity θ is defined by

θ(K) =

∫
K

θ(dx). (3.10)

Problem 3.2.1 Show that the probability generating function GK(s) of the
random variable N(K) is

GK(s) =
+∞∑
k=0

pk(K)sk = exp[θ(K)(s− 1)]. (3.11)

An important consequence of definition 3.2.1 is that for any family {Ki, i ∈
I} of disjoint compact sets, the random variables N(Ki) are independant.
This property is referred to as complete independance. In many practical
situations, the measure θ is proportional to the Lebesgue measure on the σ-
algebra of Rd. In this case, the Poisson point process is said to be stationary
and the number N(K) of points contained in a given compact K is

P{N(K) = k} =
(θµd(K))k

k!
exp(−θµd(K)), (3.12)

µd being the Lebesgue measure of Rd.

A Poisson point process is easily characterized by its Choquet capacity,
as demonstrated below in proposition 3.2.2.

Proposition 3.2.2 The Choquet capacity T (K) of a Poisson point process
is

T (K) = 1− P{N(K) = 0} = 1− exp(−θ(K)). (3.13)
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If the process is stationary, the Choquet capacity becomes

T (K) = 1− exp(−θµd(K)). (3.14)

Proof By definition, the Choquet capacity T (K) of a Poisson point pro-
cess is the probability that K intersects at least one point of the process.
According to definition 3.2.1, we have

P{N(K) > 0} = 1− P{N(K) = 0} = 1− exp(−θ(K)). (3.15)

For a stationary Poisson point process X, the intensity can easily be
estimated from some experimental dataset by

θ̄ =
X(W )

µd(W )
, (3.16)

where W denotes the observation window in Rd. As the size of the window
increases, we have θ̄ → θ.

Problem 3.2.3 Show that if P1, ... Pn are n independant Poisson point
processes Pk with respective intensities θ1, .., θn, then the union set P =
∪nk=0Pk is a Poisson point process of intensity θ =

∑n
k=1 θk.

3.2.2 Simulation of a stationary Poisson point process

We elaborate in this paragraph on the practical implementation of a sta-
tionary Poisson point process in a domain D of Rd. The simulation can be
performed in two stages. First, we simulate a Poisson random variable that
defines the number of points implanted on the domain D. Then, we simu-
late the required number of points in the domain according to an uniform law.

Random Poisson variables can be generated from the uniform law. Hence,
if U is a random variable drawn from an uniform law on [0, 1], then − ln(U)
is as required.

For the second step of the simulation, it is straightforward to simulate a
random point uniformly distributed in [0, 1]d. For any hypercube domains,
the simulation can be first performed on [0, 1]d and then be translated and
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scaled to produce a sequence of points in the hypercube. For more compli-
cated domains, simulation of uniform random points can be tackled through
rejection sampling or approximation. Rejection sampling consists in defin-
ing a rectangle R that contains the domain D. A sequence of independent
uniformly random points is simulated in R until a first point falls into D.
The process is repeated until the required number of points has been reached
in the domain D. Approximation consists in replacing the domain D by a
union of open squares that approximate D.

3.2.3 Cox-Poisson point processes

Definition 3.2.2 Let θ be a locally random finite measure on Rn. A Cox-
Poisson point process on Rn is a point process such that the number N(K) of
points contained in any compact K of Rn is a Poisson random variable with
parameter θ(K):

P{N(K) = k} = pk(K) =
θ(K)k

k!
exp(−θ(K)), (3.17)

where the intensity θ is the random variable defined by

θ(K) =

∫
K

θ(dx). (3.18)

Cox-Poisson point processes are an extension of Poisson point processes
in the sense that for these processes, the intensity θ is a random variable.

A fundamental example of Cox point processes are Poisson point processes
restricted to some random closed set. Let A be a random closed set of Rn,
an λ > 0. The measure

θ(K) =

∫
K

θ1A(x)dx, (3.19)

where 1A is the indicative function of the set A defines a Cox-Poisson point
process. This Cox-Poisson point process can be seen as the restriction of
a stationary Poisson point process of intensity θ to the random closed set
A. Such point processes are often used in stochastic geometry to construct
multiscale models. We refer the reader interested by these models to the
paper of Jeulin [12].
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3.2.4 Hard-core point processes

A hard-core point process is a point process for which the points cannot lie
closer than a specified distance D. Let P be an homogeneous Poisson point
process with intensity θ. We can obtain a hard-core point process by thin-
ning. Thinning consists in deleting points from the point process according
to some rules. In practice, for some domain Ω, we first generate the Poisson
variable N that indicates the number of points implanted in the domain.
Then, we generate the points of the process sequentially. The thinning pro-
cedure occurs at each step of the simulation when a new point is added. If
the nearest point is closer than the hard-core distance D, then the new im-
planted point is deleted.

Hard-core point processes are widely used in practical applications to
model repulsion phenomena.

3.3 Marked point processes

A marked point process is a point process for which a characteristic is at-
tached to each point. In mathematical terms, a marked point process on
Rd is a random sequence {(xn,mn)} where the points xn constitute a point
process (unmarked) called the ground process and the mn are the marks
corresponding to the respective points. A marked point process can also be
seen as a point process on R×M, whereM is a locally compact space with
countable base. This lead to the rigorous definition

Definition 3.3.1 A marked point process in Rd with mark space M is a sim-
ple point process X in Rd×M with intensity measure θ satisfying θ(C×M) <
∞ for all compact set C in K(Rd).

The marks can be continuous or discrete variables. A marked point pro-
cess is said to be stationary if its ground process is stationary. Similarly, a
marked Poisson point process is simply a marked point process whose ground
process is Poisson.

Definition 3.3.2 The intensity measure of a marked point process X on
Rd ×M is

θ(B × L) = E(X(B × L)), (3.20)
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where B is a Borel set of Rd and L a measurable set of M.

Intuitively, θ(B×L) is the mean number of points in B that have their mark
in L. The Campbell formula can be generalized to the case of marked point
processes. Hence, let X denote a marked point process on Rd ×M . Then,
we have

E
{ ∑

(x,m)∈X

f(x,m)

}
=

∫
f(x,m)dΘ(x,m) (3.21)

for any non-negative function f .

It can be shown (see for instance [32]) that the intensity of a marked
point process can be decomposed in the following manner

dΘ(x,m) = dθ(x)dMx(m), (3.22)

where θ is the intensity measure of the ground point process and Mx is a
probability measure on M. We interpret Mx as the mark distribution of a
point at location x.

For a stationary marked point process, for all subsets L of M, Θ(. × L)
is a translation-invariant measure, so that, for all Borelien set B in B(Rd):

Θ(B × L) = θLµd(B), (3.23)

where µd is the Lebesgue measure on R. The quantity θL is the intensity of
P with respect to L, and can be interpreted as the mean number of points of
P per unit volume with marks in L. Obviously, if L =M, we have θL = θ,
where θ is the intensity of the ground point process.

Example Let X be a Poisson point process in the plane R2 with intensity
θ. To each point xn ∈ X, we associate a random mark mn drawn from the
uniform law on [0, 1]. All marks are drawn independantly. {(xn,mn)xn∈X} is
a marked point process. The mark spaceM is the σ-algebra ([0, 1],B([0, 1]).

Problem 3.3.1 Demonstrate that {xn ∈ X,mn > 0.8} is a Poisson point
process. What is its intensity?

The notion of marked point process is fundamental in stochastic geometry
and is used in many applications. We will subsequently use marked point
processes to study the general Boolean model in chapter 4.



3.4. ADDITIONAL PROBLEMS 35

3.4 Additional problems

Problem 3.4.1 Let X be a stationary Poisson point process. We define the
nearest-neighbour distance distribution function ∆ to be the distribution of
the random distance from a typical point x of X to the nearest other point
in the process. Since X is stationary, without lost of generality, it suffices to
consider the case where the typical point x is the origin 0. By considering
the infinitesimal ball εBd centered around the origin, demonstrate that

P{∆ ≤ r} = 1− e−θrdµd(Bd),

where µd(B
d) is the Lebesgue measure of the unit ball in Rd.

Problem 3.4.2

1. Write a program with Python that simulates a stationary Poisson point
process with intensity θ in a bounded squared window.

2. Write a program with Python that simulates a stationary Poisson point
process with intensity θ in a disk of radius R.
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Chapter 4

Germ-grain processes

4.1 Definition and first properties

Definition 4.1.1 Let Ψ = {xn;An} be a marked point process, where the
points xn lie in Rd and the marks An are random compact subsets of Rd. A
germ-grain model can be defined from Ψ by considering the union

A = ∪∞n=1(An ⊕ xn). (4.1)

The points xn are called the germs of the process and the compact sets An
the grains of the germ-grain model.

In this chapter, we will restrict ourselves to the study of the Boolean model.
The Boolean model is an archetypal example of germ-grain process. It is a
grain model which is obtained by implanting independant random primary
grains A′ on the germs {xk} of a Poisson points process P with intensity θ.
Note that primary grains can possibly overlap. The resulting set A is

A = ∪xk∈PA′xk , (4.2)

where A′xk denotes the translated of the primary grain A′ at point xk:

A′xk = A′ ⊕ xk = {xk + y, y ∈ A′}. (4.3)

Any shape can be used for the primary grains A′, including convex, non-
convex or even non connected sets. In the literature, A′ is commonly referred
to as the typical grain of the model.

Definition 4.1.2 A Boolean model is said to be stationary if the intensity
of its germ process is stationary.
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4.1.1 First properties

Lemma 4.1.1 Let K be a compact set of Rn and A a Boolean model with
primary grain A′ and with intensity θ. The number N(K) of primary grains
hit by K follows a Poisson distribution of parameter E{θ(Ǎ⊕K)}:

P{N = n} =
E{θ(Ǎ′ ⊕K)}n

n!
exp(−E{θ(Ǎ′ ⊕K)} (4.4)

Proof We denote by P the germ process associated to A. We can produce
a thinned point process PK out of P by deleting all points xn from P such
that A′xn ∩ K = ∅. Whether or not a given germ xn is deleted by this
procedure is independant of thinning of other germs. As a consequence, PK
is an inhomogeneous Poisson point process.
We denote by θK the intensity of the thinned process PK . We have

θK(x) = θ P{Ax ∩K 6= ∅}.

The total number of points of PK has a Poisson distribution with mean

N̄K = θ

∫
Rd

P{Ax ∩K 6= ∅}dx.

Since P{Ax ∩K 6= ∅} = P{x ∈ Ǎx ⊕K}, we have

N̄K = θ

∫
Rd

P{x ∈ Ǎx ⊕K}dx = θE(µ(Ǎ′ ⊕K)),

where µ is the Lebesgues measure on R3. This establishes formula 4.4.

Lemma 4.1.1 guarantees that the number of primary grains in any bounded
window remains almost surely finite as long as E[θ(A′)] <∞. We can easily
calculate the Choquet capacity of the boolean model to find

T (K) = 1− exp(−E{θ(Ǎ′ ⊕K)}) (4.5)

for any compact set K in K(E). For the stationnary case, the Choquet
capacity becomes

T (K) = 1− exp(−θµ̄(Ǎ′ ⊕K)), (4.6)
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where µ̄(Ǎ′⊕K) denotes the average Lebesgue measure (i.e the average vol-
ume) of a primary grain A′ dilated by the compact set K.

We can determine the spatial law of the Boolean model by considering
the Choquet capacity for the structuring element {x}. For the stationnary
case, according to 4.5, we find

q = P{x ∈ Ac} = exp(−θµ̄(Ǎ′)). (4.7)

Note that we can easily express the Choquet capacity as a function of q.
Hence, we have

T (K) = 1− q

µ̄(A′ ⊕ Ǩ)

µ̄(A′) , (4.8)

where we have used the relation A′ ⊕ Ǩ = −Ǎ′ ⊕K.

Using equation 4.5, it is also possible to calculate the covariance of the
Boolean model. Recall that the covariance is defined as a function of vector
h of R3 by

C(h) = P{x ∈ A, x+ h ∈ A}. (4.9)

C(h) is exactly the Choquet capacity for the structuring element lh = {x} ∪
{x+ h}. Thus, we find

C(h) = 1− exp(−E{θ(Ǎ⊕ lh)}). (4.10)

For the stationnary case, the covariance yields

C(h) = 1− exp(−θµ̄(Ǎ⊕ lh)). (4.11)

Proposition 4.1.2 If A is a Boolean model with typical grain A′ and inten-
sity θ, the covariance of A is given by

C(h) = 2p− 1 + (1− p)2 exp(θE(γA′(h))), (4.12)

where γA′(h) = µ̄(A′∩A′−h) is the geometrical covariogram of A′ and p = 1−q.

Proof From the probabilistic definition of the covariance, we find

C(h) = P{0 ∈ A ∩ A−h} (4.13)

= 1− P{0 /∈ A}+ P{0 /∈ A−h} − P{0 /∈ A ∪ A−h} (4.14)

= 2p− 1 + P{0 /∈ A ∪ A−h} (4.15)
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In addition, we have

P{0 /∈ A ∪ A−h} = exp(−θµ̄(A ∪ A−h)) (4.16)

= (1− p)2 exp(−θµ̄(A ∩ A−h)), (4.17)

since µ̄(A ∪ A−h) = µ̄(A) + µ̄(A−h) − µ̄(A ∩ A−h). This establishes for-
mula (4.12).

Problem 4.1.3 Demonstrate that the geometrical covariogram of a disk with
constant radius R in R2 is

γ(R) = 2R2

(
arccos

(
h

2R

)
− h

2R

√
1−

(
h

2R

)2)
. (4.18)

Problem 4.1.4 Demonstrate that the geometrical covariogram of a sphere
with constant radius R in R3 is

γ(R) =
4πR3

3

(
1− 3h

4R
+

h3

16R3

)
. (4.19)

4.2 Practical implementation

Simulations of random structures are generally performed on a grid of points
(i.e 2D or 3D images), using primary grains based on combination of pix-
els. One can however rely on a completely different approach based upon
level sets and implicit functions. In this approach, primary grains are de-
scribed by implicit functions, which are real valued functions defined in the
ambient space. The level sets of an implicit function Φ are described by
an equation of the form Φ(x, y, z) = c, for some constant c. A surface is
described as a level set of the function Φ, most commonly the set of points
for which Φ(x, y, z) = 0. In this case, the points for which Φ(x, y, z) < 0
correspond to the interior of the primary grain associated to the implicit
function, the points for which Φ(x, y, z) > 0 to its complementary and the
level set Φ(x, y, z) = 0 to the boundary of the primary grain. We can use
any primary grain, whatever its shape, as long as we can represent it using
an implicit function.

In the implicit function approach, complete simulations are generated
using Boolean combinations of primary implicit functions: the union and the
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Figure 4.1: 3D Realization of a Boolean model of spheres with constant radius
R and intensity θ, realized with the software vtkSim [?]. The parameters of
the model are θ = 5× 10−2 and R = 1.

intersection of two objects A1 and A2 are defined to yield the minimum and
the maximum, respectively, of their corresponding implicit functions. Thus,
we have

Φ(A1 ∪ A2) = min{Φ(A1),Φ(A2)}

and

Φ(A1 ∩ A2) = max{Φ(A1),Φ(A2)}.

Similarly, the complementary Ac of set A is defined to be the opposite func-
tion

Φ(Ac) = −Φ(A).

Overall, using implicit functions to perform the simulation allows us to build
complex combinations of simulations that we could not process with a pixel
based method. Furthermore, vectorial simulations do not require a large
amount of computer resources.
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4.3 Statistical analysis for the Boolean model

In this section, we discuss statistical analysis for the Boolean model. For
simplicity’s sake, we restrict ourselves to the 2D and 3D cases. Our main
objective is to determine the parameters of a Boolean model such as its
intensity θ or its mean intrinsic volumes.

4.3.1 Method of densities

The method of densities (or intensities) was developed by Weil in 1984 [36]
and Santaló [31] to recover the parameters of a Boolean from a given dataset.
The main idea of the method is stated in proposition 4.3.1 below.

Proposition 4.3.1 Let A be some random closed set in Rd. The density of
the kth intrinsic volume in Rd can be estimated from the dataset by relation

vk = lim
r→∞

E{Vk(A ∩B(0, r))}
µd(B(0, r))

. (4.20)

We recall that for d = 2, the intrinsic volumes are given by

AA = v2, (4.21)

LA = 2v1, (4.22)

NA = v0. (4.23)

(4.24)

where AA and LA are the mean area and perimeter of the typical grain,
respectively. NA is called specific connectivity number. For d = 3, the
intrinsic volumes are given by

VV = v3, (4.25)

SV = 2v2, (4.26)

MV = πv1, (4.27)

NV = v0, (4.28)

(4.29)
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where SV ,MV and NV are the surface area, the specific mean curvature and
the specific connectivity number, respectively.

For models with convex grains, it is possible to relate the mean values of
the intrinsic volumes of the typical grain to measurements conducted on the
global dataset through Miles’ formulae [24]. For d = 2, Miles’ formulae yield

AA = p = 1− exp(−θĀ), (4.30)

LA = θ(1− p)S̄ = θ exp(−θV̄ , (4.31)

NA = θ(1− p)
(

1− θL̄2

4π

)
. (4.32)

For d = 3, Miles’ formulae yield

VV = p = 1− exp(−θV̄ ), (4.33)

SV = θ(1− p)S̄ = θ exp(−θV̄ , (4.34)

MV = θ(1− p)S̄
(
M̄ − π2θS̄2

32

)
, (4.35)

NV = θ(1− p)
(

1− θM̄S̄

4π
+
πθ2S̄3

384

)
. (4.36)

Hence, when estimates of the densities are given, the intensities of the Boolean
model can easily be found. We refer the reader interested by a proof of Miles’
formulae to the original paper of Miles [24] and to the book of Schneider and
Weil [32].

We can illustrate the methodology for a Boolean model of disks with
unknown constant radius R and intensity θ. We suppose that we dispose of
a dataset, from which we can estimate a fraction area AA and a perimeter
LA. The area of the typical grain is constant and yields Ā = πR2. Similarly,
the perimeter of the typical grain yields L̄ = 2πR. Therefore, Miles’ formulae
yield

AA = 1− exp(−θπR2), (4.37)

LA = θ(1− AA)2πR. (4.38)

We can easily solve to find R and θ.
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Problem 4.3.2 We consider a Boolean model of disks of intensity θ whose
radius follows a truncated normal distribution centered at value R with vari-
ance σ2. We suppose that we dispose of a dataset, from which we can estimate
the fraction area AA and a perimeter LA. Determine the parameters of the
model.

4.3.2 Minimum contrast method

The minimum contrast is another statistical method which can be employed
to perform parameter identification for germ-grain models. It consists in try-
ing to determine the parameters that minimize the distance between some
characteristic function measured on the dataset and the corresponding func-
tion obtained either from its theoretical expression or from random real-
ization of the model. For Boolean models, covariance is classicaly used in
this purpose, often in combination with granulometry curves. Usually, the
graim-germ models are not traceable analytically, and we have to rely on nu-
merical methods to perform the optimization. Nelder-Mead and Levenberg-
Marcquart algorithms are often used in this purpose [11].

4.3.3 Stereological mean-value formulae

In many practical situation, we want to study the microstructure of a 3D
material through 2D images that correspond to a slice of the material or to
a thick section. Hence, we are left with the following question: how to relate
the 2D measurements to intrinsic properties of the material?

Let Av be a spatial stationary grain-germ process in R3. We assume that
the grains are convex. We consider the intersection of Aa of Av with an
arbitrary plane P :

Aa = Av ∩ P. (4.39)

We denote (x1, x2, x3) an orthonormal system of coordinates in R3 such that
x1 ∈ P and x2 ∈ P . For r > 0, we consider the disk

cr = {x = (x1, x2), x2
1 + x2

2 < r}.
The number of grains hitting cr is necessarily the same for Av and Aa. Hence,
using Steiner’s formula, we find

θv

(
V̄ +

πS̄r

4
+ πb̄r2

)
= θa

(
Ā+ L̄r + πr2

)
. (4.40)
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This equation must be valid for all r > 0, which proves proposition 4.3.3.

Proposition 4.3.3 The mean value characteristics of Av and Aa are related
through relations

θvV̄ = θaĀ (4.41)

θv
πS̄

4
= θaL̄ (4.42)

θv b̄ = θa. (4.43)

Problem 4.3.4 We consider a material which can be modeled as a Boolean
model of spheres with unknown intensity θ and constant radius R in R3 . We
suppose that we dispose of experimental images of slices of the material, from
which we can estimate a fraction area AA and a perimeter LA. Determine
the parameters θ and R of the model.

Figure 4.2: Fe-Ag composite microstructure. The microstructure can typi-
cally be modeled by a Boolean model of spheres. This illustration is taken
from the lecture notes of Jeulin [12]
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4.4 Additional problems

Problem 4.4.1 1. Using Python, implement a code to simulate a random
Boolean of sphere in the plane using implicit functions. You can use SMIL
library to visualize the result.
2. Using Python and SMIL library, implement a code to simulate a random
Boolean of sphere in the plane, this time by relying on dilation and erosion
operators of mathematical morphology.

Problem 4.4.2 1. The image ”boolean2D.png” represents a 2D microstruc-
ture that can be modeled by a Boolean model of disks with constant radius.
Assuming that the image is ergodic, determine the intensity of the Boolean
model and the radius of the spheres.
2. The image ”boolean3D.png” is a 2D slice of a 3D microstructure that can
be modeled by a Boolean model of spheres with constant radius. Assuming
that the image is ergodic, determine the intensity of the Boolean model and
the radius of the spheres.
3. The image ”boolean2Dgamma.png” represents a 2D microstructure that
can be modeled by a Boolean model of disks whose radius is given by a gamma
law with shape parameter k and scale λ. Using the method of contrast and
Miles’ formulae, determine the parameters of the model.

4.5 Notes

The Boolean model is an archetypal model of stochastic geometry. Reference
textbooks on this topic include Matheron [20], Serra [33], Stoyan, Kendall
and Mecke [4] and Baccelli and Blaszczyszyn [3]. We also refer the reader to
the lecture notes of Jeulin [12]. For an extensive presentation, we refer the
reader to the book of Schneider and Weil [32].

Regarding statistical analysis for the Boolean model, we refer the reader
to the papers of Weil [36] and Molchanov [25]. Miles’ formulae were derived
by Miles in 1976 [24]. An introduction can be found in the book of Stoyan,
Kendall and Mecke [4]. This topic is discussed more thoroughly in the book
of Schneider and Weil [32].
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Another topic of interest regarding the Boolean model is percolation.
This topic has been studied extensively over the years. We refer the reader
interested by this the percolation proerties of the Boolean model to the pa-
pers of Hall [9] and Jeulin and Moreaud [17], and to the book of Torquato [35].

In materials engineering, the Boolean model has been employed to sim-
ulate a wide range of microstructures. Various examples of the application
of the Boolean model in materials science are described in the paper [10] of
Hermann. In 1992, Quenec’h et al. used the Boolean model to study the
growth of WC grains in WC-Co cermets [30]. In 2001, Jeulin et al. relied on
Poisson polyhedra to simulate the microsctructure of needle-shaped gypsum
crystal grains [16]. In 2003, Capasso studied the application of the Boolean
model to the description of crystallisation in metals and polymers. More
recently, Jean et al. simulated the microstructure of rubbers by considering
a multiscale Cox-Boolean model [11]. Using a random walk based model,
Altendorf and Jeulin developed a stochastic model for simulating 3D fiber
structures [1]. Pereyga et al. relied on a Boolean model of random cylinders
to model a random fibrous network [29].



48 CHAPTER 4. GERM-GRAIN PROCESSES



Chapter 5

Random Tessellations

A tessellation or mosaic is a division of the d−dimensional Euclidean space
Rd into polyhedra. Such geometrical patterns can be observed in many nat-
ural situations, as shown in figure 5.1. Hence, random tessellation models
have been widely used in physics, materials science and chemistry.

5.1 General introduction

Definition 5.1.1 A tessellation in Rd is a countable system T of subsets
satisfying the following conditions:

• T ∈ Flf (Rd), meaning that T is a locally finite system of nonempty
closed sets.

• The sets K ∈ T are compact, convex and have interior points.

• The sets of T cover the space,

∪K∈TK = Rd (5.1)

• If K and K’ are two sets of T then their interiors are disjoint.

We denote by T the set of all tessellations.

The faces of a cell C of the tessellation are the intersections of C with its sup-
porting hyperplanes. A k−face is a face of dimension k. Among all possible
k−faces, the 0−faces, or vertices, and the 1−faces, or edges, are of particular

49
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interest. The d − 1 dimensional faces of a d−dimensional polytope will be
referred to as its facets.

Figure 5.1: Steel polycristal microstructure

Proposition 5.1.1 The cells of a tessellation T are convex polytopes.

Proof Let m be a mosaic and C ∈ m. Since m is locally finite, there are
only a finite number of cells, say C1, C2, .., Cm ∈ m{C} that intersect C.
Since a mosaic covers the whole space Rd, the boundary C of C is found to
be

C = ∪mi=1(Ci ∩ C).

By definition, for each i between 0 and m, the relative interiors of C and Ci
are disjoint. Therefore, the convex bodies C and Ci can be separated by a
hyperplane Hi. More precisely, there exists an hyperplane Hi such that the
closed halfspaces H+

i and H−i bounded by Hi satisfy C ⊂ H+
i and Ci ⊂ H−i .

Note that this is only true because we are considering convex bodies. As a
consequence, we have

C ⊂ ∩mi=1H
+
i .

Reciprocally, let x be in ∩mi=1H
+
i . We suppose that x /∈ C. Let y be an

interior point of C. Necessarily, y ∈ ∩mi=1H
+
i . The line segment with end
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points x and y obviously contains a boundary point x′ of the cell C. On the
one hand, since x 6= x′, x′ ∈ ∩mi=1H

+
i . On the other hand, x′ ∈ Cj for some

j ∈ {1, ..,m}. This leads to a contradiction. Therefore, if x is in ∩mi=1H
+
i ,

then x is necessarily in C. We have demonstrated that

C = ∩mi=1H
+
i .

Being compact and the finite intersection of closed halfspace, C is necessarily
a convex polytope.

5.1.1 General study

The general study of tessellations is rather technical, and falls beyond the
scope of this introductory course. Therefore, in this chapter, we will only try
to point out the general ideas behind the theory. We refer the reader inter-
ested by a more comprehensive study of general tessellation to the literature.

A fruitful idea to study general tessellations is to rely on the stochastic
structures induced by the tessellation on the ambient space. For instance, if
we consider a tessellation of the plane R2, the edges of the tessellation can
be seen as a segment process. A d−dimensional tessellation T also induces
point processes in Rd. For instance, the set of vertices of T , the set of edges
midpoints or the set of all cells centroids are random point processes of Rd.
By determining mean-value formulae for these point processes, it is possible
to characterize some of the geometrical properties of T . For instance, the
intensity of the random point process constituted by all cells centroid cor-
respond the mean number of cells of the tessellation per volume unit. The
number nd−1,d(x) of edges emanating from the vertex x or the number of cells
containing x are additional features of interest. Again, mean values for these
quantities characterize the geometry of the tessellation. The determination
of mean-values formulae for these quantites is a difficult problem, which often
builds upon marked point processes theory.

Another common approach is to rely on germ-grain processes theory. Let
T be a tessellation of Rd. If we denote by xn the cell centers, then {(xn, Cn)}
can be seen as a germ-grain process with convex grains. We call typical cell
and we note C0 the typical grain of the process. In an analogous manner, the
edges midpoints with their cooresponding edges form a germ-grain process.
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The advantage of this approach is that one can rely on results obtained for
germ-grain processes to study a tessellation T .

5.1.2 Random tessellation in the plane

In this section, we try to illustrate the study of random mosaics for a planar
tessellation. Thus, let T be a tessellation on R2. The following mean values
are of particular interest to characterize T :

• θk : Intensity of the point process of the centroids of the k-faces induced
by T on R2.

• Ā : Mean area of the typical cell.

• P̄ : Mean perimeter of the typical cell.

• njk : Mean number of k-faces adjacent to the typical j-faces of T .

Proposition 5.1.2 The parameters of T satisfy

θ1 = θ0 + θ2 (5.2)

n02 = 2 + 2
θ2

θ0

, n20 = 2 + 2
θ0

θ2

, (5.3)

Ā =
1

θ2

, P = 2
θ1

θ2

l1, (5.4)

n21 = n20, n01 = 3, n10 = 2. (5.5)

In addition, if the tessellation T is normal, then we have

n02 = 3, n20 = 6. (5.6)

These relation are derived by considering the topological configuration of
random mosaics. Some results are particularly obvious. For instance, it is
clear that the number of neighbor vertices for a given edge is n10 = 2. Note
that similar relations can be obtained in higher dimensions. We refer the
reader to the book of Schneider and Weil [32] for a more extensive presenta-
tion of the theory and to the book of Stoyan, Kendall and Mecke [4] for the
case d = 3.
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5.2 Poisson tessellation models

5.2.1 Poisson hyperplanes

A hyperplane is a subspace of one dimension less than its ambient space.
For instance, if a space is 3-dimensional then its hyperplanes are the 2-
dimensional planes. An affine hyperplane is an affine subspace of codimension
1 in an affine space. In Cartesian coordinates, an affine hyperplane H can
be described with a single linear equation of the following form

u1x1 + u2x2 + · · ·+ udxd = r, (5.7)

where
∑d

i u
2
d = 1 and r ∈ R. The vector u = (u1, · · · , ud)T is orthogonal

to H and unitary. We denote by A the set of all affine hyperplanes of Rd.
An hyperplane is completely characterized by u and r, and can thus be
considered as the image of these quantities by the application

Ψ : (u, r) ∈ 1

2
S× R→ A 3 H(u, r), (5.8)

where
H(u, r) = {x ∈ R, u1x1 + u2x2 + · · ·+ udxd = r}. (5.9)

and S is the unit semi-sphere of Rd.

Definition 5.2.1 Let P be a Poisson point process in 1
2
S × R with inten-

sity θ(du)dx, where θ is a positive Radom measure on the semi-sphere 1
2
S.

The image of P by application Ψ is the random closed set H called Poisson
hyperplanes network.

Remark One could have thought of relying on a classical Boolean model
with lines as grains to construct Poisson hyperplanes. The problem with this
approach is that lines are not bounded and therefore not compact.

Theorem 5.2.1 Let K be a compact set of Rd. The number of hyperplanes
hit by K is a Poisson random variable with intensity

θ(K) =

∫
1
2
S
ν1(K|u)θ(du). (5.10)

In this expression, ν1(K|u) denotes the total length of the orthogonal projec-
tion of K on direction u.
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Proof By construction, the intersection of T with every line with unit sup-
port vector u is a Poisson point process with intensity θ(du). Hence, the
number of hyperplanes hit by K for a given direction u is ν1(K|u)θ(du).

Using theorem 5.2.1, we can easily prove the following proposition.

Proposition 5.2.2 The Choquet capacity of a Poisson hyperplanes network
H is given for all compact sets K in Rd by

T (K) = 1− exp

[
−
∫

1
2
S
ν1(K|u)θ(du)

]
. (5.11)

5.2.2 Poisson lines tessellations

Poisson hyperplanes can be used to produce random tessellations. In this
section, we restrict ourselves to the plane R2.

Definition 5.2.2 Let L be a planar motion-invariant line process of inten-
sity θ. L induces a stationary tessellation on R2, called Poisson line tes-
sellation. The line intersections form the vertices of the tessellation, and
segments of line with vertices at both endpoints form the edges.

To characterize the tessellation, we introduce the quantity

ρ =
2θ

π
, (5.12)

which corresponds to the mean number of lines intersected by a test line
segment of unit length. Let g be a fixed line of L. Then, the intensity of the
point process of intersection points on g is given by ρ. As a consequence, the
mean edge length is

l1 =
1

ρ
(5.13)

With probability one, there are no triplets of lines that meet at the same
vertex. Hence, we have

n02 = 4 (5.14)
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almost surely. Therefore, using proposition, we find

θ0 =
πρ2

4
, (5.15)

θ1 =
πρ2

2
, (5.16)

θ2 =
πρ2

4
. (5.17)

Definition 5.2.3 The typical cell of the Poisson hyperplane tessellation is
called Poisson polygon.

The first moments of Poisson polygon can easily be calculated with proposi-
tion, to find

Ā =
4

πρ2
, (5.18)

L̄ =
4

ρ
. (5.19)

Figure 5.2: Simulations of WC-Co cermets microstructures using Poisson
polygons. This figure is taken from the study [30] of Quenec’h et al.
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5.3 Poisson-Voronöı tessellations

We present in this section the Poisson-Voronöı tessellation model. This model
has been studied extensively and is a classical model in stochastic geometry.

5.3.1 Definition

Let Ω denote a given volume in R3. A Voronöı tessellation is a tessellation
built from a Poisson point process P in the space R3. Every point x of R3 is
associated to the class Ci containing all points of R3 closer from the point xi
of P than from any other point of P . Hence, the classes Ci, i = 1, .., N are
defined by

Ci =

{
y ∈ R3,∀j 6= i, ‖xi − y‖ ≤ ‖xj − y‖

}
. (5.20)

It can be shown that with probability one, Voronöı tessellations are normal
and face-to-face. Voronöı tessellations are characterized by one single param-
eter, namely the intensity of the underlying point process. Thus, according
to proposition, for a Voronöı tessellation in the plane, we have

θ2 = θ, (5.21)

θ0 = 2θ, (5.22)

θ1 = 3θ, (5.23)

where θ0, θ1 and θ2 denote the intensities of the point processes constituted
by the vertices, the edges center and the cell centers, respectively. Similarly,
the mean area of a cell of the tessellation is

Ā =
1

θ
. (5.24)

These relations can be generalized for d > 2.

5.3.2 Johnson-Mehl Tessellations

Johnson-Mehl tesselations can be seen as a sequential version of the Voronöı
model, where the Poisson points are implanted sequentially with time. All
classes grow then isotropically with the same rate, and the growth of crystal
boundaries is stopped when they meet. All Poisson points falling in an
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Figure 5.3: Voronöı tessellation in R3. The simulation has been obtained with
the software VtkSim [?]. The center of the Voronöı cells are represented in
grey.

Figure 5.4: Voronöı tessellation in R3. The simulation has been obtained with
the software VtkSim [?]. The center of the tessellation cells are represented
in grey. The first germs are represented with larger radii.
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existing crystal are removed. From a mathematical perspective, a Johnson-
Mehl tessellation is constructed from a sequential Poisson point process where
the points xi, i = 1, .., N are implanted sequentially at a time ti, i = 1, .., N .
The classes Ci, i = 1, .., N corresponding to the points xi, i = 1, .., N are
defined by

Ci =

{
y ∈ R3,∀j 6= i, ti +

‖xi − y‖
v

≤ tj +
‖xj − y‖

v

}
. (5.25)

Note that when all times are set to zero, we recover the classical Poisson-
Voronöı tessellation model.

5.4 Additional Problems

Problem 5.4.1 The image ”tessellation2D.png” represents a 2D microstruc-
ture that can be described by a Voronöı tessellation. Assuming that the image
is ergodic, determine the intensity of the Boolean model and the radius of the
spheres.

5.5 Notes

Random tessellations constitute an active topic in stochastic geometry. Ref-
erence textbooks on this topic include Matheron [20], Stoyan, Kendall and
Mecke [4]. For an extensive presentation, we refer the reader to the book of
Schneider and Weil [32], where a proof is given for almost all results. The
mean-value relationships given in section 5.1 are mostly due to the studies
of Mecke [21] and Møller [26].

Poisson hyperplanes tessellations and Poisson polyhedra have been ex-
tensively studied by Matheron [20], Serra [33] and Miles [23]. We also refer
the reader to the paper [22] of Mecke.

The Voronöı tessellation is a classical model in stochastic geometry. A
general description of Poisson-Voronöı tessellations in Rd can be found in
Møller [26, 28]. The Johnson-Mehl tessellation model was introduced by
Johnson and Mehl to describe crystallization processes [18, 2, 8]. Their model
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can be seen as a variation of the Voronöı model. The paper [27] of Møller
provides a unified exposition of Random Johnson-Mehl tessellations.
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Chapter 6

Random functions

6.1 Definition and first properties

In this section, we denote by R̄ = R ∪∞ the extended real line.

Definition 6.1.1 A random function on Rd is a function Z which associates
to each element x of Rd a random variable Z(x) with value in R̄.

A random function can be characterized by its spatial law, defined for all
m > 0 by

Fm(x, z) = P{Z(x1) < z1, Z(x2) < z2, .., Z(xm) < zm}, (6.1)

where x1, x2, .., xm are points in Rd and z1, z2, .., zm are elements of R̄. When
m = 1, the spatial law yields the univariate distribution

F (x, z) = P{Z(x) < z}. (6.2)

The function Z : R→ R defined by Z(x) = x+ G(0, σ), where G(0, σ) is
a Gaussian white noise of variance σ2 is for instance a random function. At
each point x, the univariate distribution of Z is given by

F (x, z) = P{Z(x) < z} = P{G(0, σ) < z − x}.

We define the moments of a random function Z in the following manner:

Definition 6.1.2 Let Z be a random function on Rd. The covariance of the
random function Z at point x is

C(x, h) = E{Z(x)Z(x+ h)}. (6.3)

61
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Definition 6.1.3 Let Z be a random function on Rd. The central correlation
function of Z at point x is

W2(x, x+ h) = E{Z(x)Z(x+ h)} − E{Z(x)}E{Z(x+ h)}. (6.4)

More generally, the central correlation function of order m > 0 of Z at point
x yields

Wm(x1, .., xm) = E{Z(x1)− E{Z(x1)}}...E{Z(xm)− E{Z(xm)}}. (6.5)

6.1.1 Semi-continuity

In most practical situations, the random structures that we study exhibit
sharp discontinuities and edges. Hence, the space of continuous functions
appear to be too restrictive. In this section, we elaborate on the concept of
semi-continuous function, which allows us to describe a wide range of random
structures.

Definition 6.1.4 Let Z : Rd → R̄ be a random function. Z is said to be
upper semi-continuous at some point x in Rd if for all λ > 0, if λ > f(x),
then there exists a neighboorhood V (x) of x such that ∀y ∈ V (x), λ > f(y).
Similarly, Z is said to be lower semi-continuous at some point x in Rd if for
all λ > 0, if λ < f(x), then there exists a neighboorhood V (x) of x such that
∀y ∈ V (x), λ < f(y).

Obviously, if a function is both lower- and upper-semi continuous, it is con-
tinuous.

Semi-continuity and graph The notion of lower (resp. upper) semi-
continuity for a function f is closely related to the topology of the subgraph
(resp. overgraph) of f . The subgraph Γf of a function f is defined to be the
set

Γf = {(x, z) ∈ Rd × R̄, z ≤ f(x)}. (6.6)

Similarly, the overgraph Γf of a function f is defined to be the set

Γf = {(x, z) ∈ Rd × R̄, z ≥ f(x)}. (6.7)
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Figure 6.1: Examples of upper (left) and lower (right)semi-continuous func-
tions

Proposition 6.1.1 Let Z : Rd → R̄ be a random function. Z is lower semi-
continuous if and only if its overgraph is a closed subset of Rd×R̄. Similarly,
Z is upper semi-continuous if and only if its subgraph is a closed subset of
Rd × R̄.

Proof The proof of proposition 6.1.1 is left as an exercise.

6.1.2 Choquet capacity of a random function

It is possible to generalize the notion of Choquet capacity to the case of
semi-continuous functions. To that end, let Z be an upper semi-continuous
random function on Rd. We consider the set L of all lower semi-continuous
functions g on Rd with compact support K. The functions of L are defined
as follows:

g(x) <∞ if x ∈ K
g(x) =∞ otherwise

(6.8)

Definition 6.1.5 The Choquet capacity of the random function Z is the
functional defined on L by

TZ(g) = P{x ∈ DZ(g)} = 1−Q(g), (6.9)

where
DZ(g)c = {x, g(x+ y) < Z, ∀y ∈ K}. (6.10)
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As for the case of random sets, the choice of the function g in L is fun-
damental and each function brings its own information. For instance, if we
consider the function g defined on Rd by

g(x) =

{
zi if x = xi
∞ otherwise,

(6.11)

then the Choquet capacity yields the univariate distribution of the random
function Z.

The Choquet capacity of a lower semi-continuous random function on Rd

can be defined in a similar manner by considering the set U of all upper
semi-continuous functions g on Rd with compact support K. The functions
of U are defined as follows:

g(x) > −∞ if x ∈ K
g(x) = −∞ otherwise

(6.12)

Definition 6.1.6 The Choquet capacity of the lower semi-continuous ran-
dom function Z is the functional defined on U by

PZ(g) = P{x ∈ HZ(g)}, (6.13)

where

HZ(g)c = {x, g(x+ y) > Z, ∀y ∈ K}. (6.14)

Change of support Let Z be a semi-continuous random function on Rd,
and let K be a compact subset of Rd. Then, we define the changes of support
by the sup and the inf to be

Z∨(K) = sup
x∈K
{Z(x) = ∨x∈K{Z(x)} (6.15)

and

Z∧(K) = inf
x∈K
{Z(x) = ∧x∈K{Z(x)} (6.16)
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Problem 6.1.2 Let Z be an upper semi-continuous random function on Rd.
We consider the lower semi-continuous function g defined on Rd by

g(x) =

{
z if x ∈ K
∞ otherwise,

(6.17)

Show that
TZ(g) = 1− P{Z∨(K)} (6.18)

6.2 Boolean random functions

Boolean random function are an essential extension of the classical Boolean
model. We discuss their main properties in this section.

6.2.1 Construction and definition

We denote by µd the Lebesgue measure in Rd. Let θ be a σ-finite measure
on R, and P be a stationary Poisson point process with intensity µd ⊗ θ.
We consider a family of independent lower semi-continuous primary random
functions Z ′t(x) such that the subgraphs ΓZ

′
t = A′(t) have almost surely

compact sections AZ′t(z).

Definition 6.2.1 We call Boolean random function with primary function
Z ′t(x) and intensity µd ⊗M the random function

Z(x) = sup
(tk,xk)∈P

{Z ′tk(x− xk)} = ∨(tk,xk)∈P{Z ′tk(x− xk)}. (6.19)

Intuitively, we construct a Boolean random function by implanting primary
grains at each point of a random point process.

It is sometimes convenient to consider the subgraph of a Boolean random
function Z, defined to be

ΓZ = ∨(tk,xk)∈PA
′
xk

(tk) (6.20)

The definition of Boolean random functions can be easily extended to
non-stationary Point processes by considering a non-stationary ground point
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Figure 6.2: Construction of a Boolean random function. At each point of a
stochastic point process, we implant a lower semi-continuous primary func-
tion Z ′t with random paramater t. This figure is reproduced from the lecture
notes of Jeulin [12]

process for P .

An example of Boolean random function is given by the so-called Boolean
islands. Let P be a Poisson point process on Rd. Boolean islands are con-
structed by implanting at each point of the process the function

f(x) = λδ(x), (6.21)

where λ is a random variable on R.

6.2.2 Choquet capacity of a Boolean random function

Let g be an upper semi-continuous function on Rd with compact support K
in Rd. We denote Dz the subset of Rd defined by

Dz(g)c = {x, Z(x+ y) < g(y),∀y ∈ K}. (6.22)

Problem 6.2.1 Let Z1 and Z2 be two lower semi-continuous functions on
Rd, show that

DZ1∨Z2(g) = DZ1(g) ∪DZ2(g) (6.23)
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Theorem 6.2.2 Let Z be a Boolean random function with primary function
Z ′t(x) and intensity µd ⊗M :

Z(x) = ∨(tk,xk)∈P{Z ′tk(x− xk)}. (6.24)

The Choquet capacity of the Boolean Random function Z is given by

1− T (g) = Q(g) = exp

(
−
∫
R
µ̄(DZ′t

(g))M(dt)

)
(6.25)

Proof According to (6.23), we have

DZ(g) = ∪(tk,xk)∈PDZ′tk
(g). (6.26)

By construction, Dz(g) is thus a Boolean model with primary grain DZ′t
(g).

Therefore, the number of primary functions Z ′t that intersect the compact
supportK of g follows a Poisson distribution with parameter

∫
R µ̄d(DZ′t(g))M(dt).

This concludes the proof.

Knowing the Choquet capacity, we can easily calculate the spatial law of
the Boolean random function Z by considering the function g defined by

g(x) = zi if x = xi,+∞ otherwise.

We find

1− T (g) = P{Z(x1) < z1, .., Z(xn) < zn} =

exp

(
−
∫
R
µ̄d(AZ′t(z1) ∪ ... ∪ AZ′t(zn))M(dt)

)
.

(6.27)

In particular, the univariate distribution function is given at any point x in
R by

F (z) = P{Z(x) < z} = exp

(
−
∫
R
µ̄d(AZ′t(z))M(dt)

)
. (6.28)
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6.3 Notes

Boolean random function have been introduced by Jeulin and Jeulin [14] for
studying rugosity profiles and were investigated in more depth by Serra [33].
An extensive presentation of this topic can be found in the book of Serra [33]
and in the lecture notes of Jeulin [12].

In material engineering, random boolean functions have been used to
simulate rough surfaces. We refer the reader interested by this topic to the
papers of Laurenge and Jeulin [15], Jeulin and Jeulin [14] and Jeulin [13].
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Appendix A

Topology of random closed sets

A.1 Closed convergence topology

In this section, we consider a locally compact space of countable type E.
Recall that a topological space E is compact if and only if there exists some
countable collection U = {Ui}∞i=1 of open subsets of E such that any open
subset of E can be written as a union of elements of some subfamily of U .
We denote by F(E), G(E) and K(E) the classes of closed, open and compact
subsets of E respectively. Similarly, we denote by P(E) the set of all parts
of E.

A.1.1 Closed convergence topology on F(E)

Definition A.1.1 If B is a subset of E, we denote by FB the class of all
closed subsets of E intersecting B, and by FB its complementary in F(E).

FB = {F ∈ F , F ∩B 6= ø}, FB = {F ∈ F , F ∩B = ø} (A.1)

FB is the class of all closed subsets of E disjoint from the subset B.

We can easily show (Problem A.1.1) that the classes {FK , K ∈ K(E)} and
{FG, G ∈ G(E)} are stable by union and by finite intersection. In addition,
the empty set and E belong to both classes. An immediate consequence is
that {FK , K ∈ K} and {FG, G ∈ G} constitute a familly of open sets of
F . We denote by Tf the closed convergence topology induced on F by these
classes. Note that the class of subsets

{FKG1,G2,..Gn
= FK ∩ FG1 ∩ ... ∩ FGn , K ∈ K, G1, .., Gn ∈ G} (A.2)

71
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is a basis of the closed convergence topology Tf .

Problem A.1.1 If (Bi)i∈I is a familly of subsets of E, show that we have

∪i∈IFBi
= F∪i∈IBi

, ∩i∈IFBi = F∪i∈IBi , (A.3)

but only the inclusions

F∩i∈IBi
⊂ ∩i∈IFBi

, ∪i∈IFBi ⊂ F∩i∈IBi . (A.4)

Theorem A.1.2 F(E) is compact and countable for the closed convergence
topology.

Proof The proof proceeds in three steps. First, we construct a countable
topological basis of Tf . Then, we show that F(E) is separated for the closed
convergence topology. We finally rely on the topological basis constructed in
step one to demonstrate the compacity of F(E)

1/ We first construct a countable topological basis of Tf . Recall that a
basis for a topological space equipped with a topology is a collection of open
sets for this topology such that every open set can be written as a union of
elements of the basis. Let B be a countable basis of relatively compact open
sets for the topology E of E, such that

∀U ∈ E , U = ∪{B ∈ B|B̄ ⊂ U}.

Let F be an element of F(E) and FKG1,..,Gn
an open neighborhood of F in

F(E). We introduce the family Tb of subsets of F(E) defined by

Tb = {F B̄
′
1∪...∪B̄′k

B1,..,Bn
|n, k ≤ 0, B1, .., Bn, B

′
1, ..., B

′
k ∈ B}.

For all i between 1 and n, we can select a point xi in F ∩ Gi and an open
set Bi in B such that xi ∈ B̄i ⊂ Gi ∩ Kc. We have built a finite covering
of the compact K by a class of open sets {Bj ∈ B, j = 1, .., k} such that
∀j = 1, .., k, ∀i = 1, .., n, B̄j ∩ B̄i = ø and B̄j ∩ F = ø. This demonstrates
that Tb is a countable basis of the topology Tf .

2/ The second step of the proof is to show that F is separated for the
closed convergence topology. If F and F ′ are two distinct closed subsets of
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E, there exists x ∈ F such that x ∈ F ′ (or x ∈ F ′ such that x ∈ F ). Since E
is separated, we can find an open set B relatively compact such that x ∈ B
and F ′ ∩ B̄ = ø. By definition, F ∈ FB, F ′ ∈ F B̄, and FB ∩ F B̄ = ø. We
just exhibited an open set separating F and F ′ and thus demonstrated that
F is separated.

3/ We finally demonstrate that F(E) is compact. Let I and J be count-
able sets, {Ki ∈ K(E), i ∈ I} a family of compact sets and {Gj ∈ K(E), j ∈
J} a family of open sets, such that(

∩i∈I FKi

)
∩
(
∩j∈J FGi

)
= ø. (A.5)

If we denote by Ω the union ∪j∈JGj, we have ∩j∈JFGj = FΩ so that equa-
tion A.5 reads

∩j∈JFΩ
Ki

= ø. (A.6)

If we assume that for all i ∈ I, Ki∩Ωc 6= ø, then, by construction, the closed
subset (∪i∈IKi) ∩ Ωc is disjoint of Ω and intersects each compact set Ki,
which contradicts relation A.6. As a consequence, there exists i0 in I such
that Ki0 ⊂ Ω. Since E is locally compact, we can exhibit a finite covering
Gj1 , .., Gjn of Ki0 by open subsets of E. Moreover, we have

FKi0
∩ FGi1 ∩ .. ∩ FGin = ø. (A.7)

This demonstrates that any covering of F(E) by open subsets of its topo-
logical basis contains a finite covering. Thus, F(E) is quasi-compact. Being
also separated, F(E) is compact.

A.1.2 Closed convergence topology on G(E)

The classes {GK , K ∈ K} and {GG, G ∈ G} constitute a familly of open sets
of G. This family induce a topology Tg on G(E). The application from F
to G which associates to each closed set F of F its complementary F c in
G is obviously an homeomorphism. As a consequence, we can transpose all
topological properties of F to G by duality.
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A.2 Convergence and continuity in F(E)

A.2.1 Convergence in F(E)

Definition A.2.1 Let {Fn}n∈N be a sequence of elements of F(E), and F be
a closed subset of E. {Fn}n∈N converges to F if and only if the two following
conditions are satisfied:

1. If an open set G intersects F , then it intersects all elements Fn of the
sequence, except for a finite number of them.

2. If a compact set K is disjoint for F , it is disjoint from all elements Fn
of the sequence, except for a finite number of them.

Definition A.2.1 relies on topological considerations, and is quite difficult to
use in practice. However, since F(E) is a countable space, we can restrict
our analysis to the case of sequential convergence. Theorem A.2.1 enables us
to characterize analytically the convergence in F(E).

Theorem A.2.1 Let {Fn}n∈N be a sequence of elements of F(E), and F be
a closed subset of E. {Fn}n∈N converges to F if and only if the two following
conditions are satisfied:

1. ∀x ∈ F , we can find a sequence {xn} converging to x and N > 0 such
that, ∀n > N , xn ∈ Fn.

2. If a compact set K is disjoint for F , it is disjoint from all elements Fn
of the sequence, except for a finite number of them.

In addition, condition 1 (resp. 2) is equivalent to condition 1 (resp. 2) of
definition A.2.1.

Proof Let {Fn} be a sequence of elements of F(E), and F be a closed subset
of E.

1 → 1′: We assume that condition 1 of definition A.2.1 is satisfied: if an
open set G intersects F , then it intersects all elements Fn of the sequence,
except for a finite number of them. Let x be in F , and G1 = E ⊃ G2 ⊃ ... be
a fundamental system of open neighbourhoods of x. By construction, each
open set Gk intersects F . Since condition 1 of definition A.2.1 is satisfied,
there exists an integer Nk such that n ≥ Nk implies Fn ∩ Gk 6= ø. As a
consequence, we can construct a sequence {xn}n≥N1 , such that ∀p = Nk, Nk+
1, .., Nk+1 − 1, xp ∈ Fp ∩Gk. {xn}n≥N1 . {xn}n≥N1 converges to x.
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1′ → 1: We assume now that condition 1 of theorem A.2.1 is satisfied. Let
G be an open set that intersects F . Necessarily, there exists a sequence
{xn}n≥n0 converging to x such that ∀n ≥ n0, xn ∈ Fn. Since G is an open
neighboordood of x, there exists N ≥ n0 such that xn ∈ G ∩ Fn. For all
n ≥ N , G intersects Fn.

2 → 2′: If F = E, the implication is trivial. If F 6= E, let x be a point of
and K a compact neighboorhood of x. Since condition 2 of definition A.2.1
is satisfied, there exists N ≥ 0 such that K is disjoint of Fn for n ≥ N .

2′ → 2: If condition 2 is not satisfied, there exists a compact set K disjoint
from F and a subsequence {Fnk

} such that for any k, xnk
∈ K ∩ Fnk

. The
subsequence {xnk

} has an accumulation point x in K∩F c. As a consequence,
condition 2’ is not satisfied.

Problem A.2.2 Use theorem A.2.1 to show that the application (F, F ′) →
F ∪ F ′ from F(E)×F(E) to F(E) is continuous.

A.2.2 Semi-continuity

Definition A.2.2 Let {Fn} be a sequence of elements of F(E). We de-
note by lim Fn the intersection of all accumulation points of {Fn} in F(E).
Similarly, we denote by lim Fn their union.

Obviously, a sequence {Fn} converges in F(E) if and only if lim Fn = lim Fn.

Proposition A.2.3 Let {Fn} be a sequence of elements of F(E).

1. lim Fn is the larger closed set F ∈ F(E) satisfying properties 1 of
defintion and theorem

2. lim Fn is closed, and is the smaller closed set F ∈ F(E) satisfying
properties 2 of definition and theorem

Proof To prove the first assertion of proposition A.2.3, we consider the set
F constituted of all x ∈ E such that any neighbourhood of x intersects all
elements Fn of the sequence {Fn}n≥0 except for a finite number of them.
Note that F is a closed set.
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On the one hand, if x ∈ F , then x the limit of a sequence {xn} such that
xn ∈ Fn for n large enough. As a consequence, if x belongs to F , then x
belongs to all accumulation sets of the sequence {Fn}n≥0, so that F ⊂ lim Fn.

On the other hand, if xF , we can find a neighbourhood V of x and a par-
tial sequence {Fnk

}k≥0 such that ∀k, V ∩ Fnk
= ø. Since F(E) is a compact

space, {Fnk
}k≥0 has an accumulation set A such that lim Fn ⊂ A. Since xA,

xlim Fn. As a consequence, lim Fn ⊂ F .

We conclude this section by defining the notion of semi-continuity for
applications in F(E).

Definition A.2.3 Let Ω be a topological space, and ψ an application from
Ω to F(E). ψ is upper semi-continuous if for all compact set K in K, the
inverse image ψ−1(FK) of FK is open in Ω. Similarly, ψ is lower semi-
continuous if for all open set G in G, the inverse image ψ−1(FG) of FG is
open in Ω

It is clear that an application is continuous if and only if it is both upper
and lower semi-continuous.

Problem A.2.4 Show that the application (F, F ′) → F ∩ F ′ from F(E) ×
F(E) to F(E) is lower semi-continuous.

A.3 Choquet capacity

As pointed out in introduction, statistical approaches provide powerfull meth-
ods to study mathematical sets. According to the axiomatic approach of
probability theory, the definition of a closed random set in a space E should
rely on the construction of a measurable map from some abstract probability
space into F(E).

Problem A.3.1 Show F(E) can be equipped with the σ-algebra B(F) in-
duced by the closed convergence topology, generated by either of the classes

{FK , K ∈ K(E)}, {FG, G ∈ G(E)}. (A.8)



A.3. CHOQUET CAPACITY 77

An immediate consequence of problem A.3.1 is that if Ψ : Ω → F(E) is a
map from some topological space Ω to F , Ψ is measurable if and only if it
is upper or lower semi-continuous. These considerations enable us to define
the notion of random closed sets.

Definition A.3.1 Let (Ω, σ(Ω), P ) be a probability space equipped with its
σ-algebra σ(Ω) and a probability measure P . A random closed set A is an
(σ(Ω),B(F)-measurable map A from Ω into F(E). Its distribution is the
image measure PAof P by A.

Two random closed sets with identical distribution are said to be stochasti-
cally equivalent. Similarly, two random closed sets are said to be independant
when their joint distribution law is the product of their individual distribu-
tion laws.

Definition A.3.2 Let A be a random closed set of E. The capacity func-
tional T of Z is the functional defined on K(E) by

T (K) = PA{FA} = P{A ∩K 6= ø}. (A.9)

The distribution of a closed random set is uniquely specified by its capacity
functional. Note that for all K in K(E), 0 ≤ T (K) ≤ 1 (i). In addition, if a
sequence {Kn}n∈N converges toward K in K(E), it can be easily proved using
that the sequence T (Kn)n∈N converges toward T (K) (ii). If T is a capacity
functional, we can finally consider the functional S0 on K(E) defined by

S0(K) = 1− T (K). (A.10)

By recurrence, we define for all k ≥ 1 a functional Sk on K(E)k by

Sk(K0, K1, .., Kk) = Sk−1(K0, K1, .., Kk−1)− Sk−1(K0 ∪Kk, K1, .., Kk−1).
(A.11)

Then, for all K0,K1, .., Kk in K(E), k ≥ 0, Sk(K0, .., Kk) ≥ 0 (iii).

Definition A.3.3 A real function T on K(E) satisfying properties (i) and
(ii) is called a Choquet capacity. A Choquet capacity satisfying property (iii)
is said to be alternating of infinite order.

The main result of this chapter is the Choquet theorem, that we state
below without proof. Note that a proof can be found in the books of Math-
eron [20] or Schneider and Weil [32].
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Theorem A.3.2 If T : K(E) → R is an alternating Choquet capacity of
infinite order, then there exists a uniquely determined probability measure P
on F(E) such that, for all compact set K in K(E),

P{FK} = T (K). (A.12)

A.4 Notes

Most of the material of this chapter has been developed by George Matheron.
We refer the reader interested by a broader treatment of the topological and
stochastic properties of random sets to his treaty [20] published in 1975, and
to the more recent book of Schneider and Weil [32]. The Choquet theo-
rem A.3.2 was first established by Choquet [5]. Another relevant reference
for the material covered in this chapter is the book of Stoyan, Kendall and
Mecke [4].



Appendix B

Basic facts on probability and
measure theory

In this appendix, we recall the main results of measure theory and probability
theory. A measure on a set is a systematic way to assign a number to each
suitable subset of that set. In this sense, a measure is a generalization of the
concepts of length, area, and volume. Technically, a measure is a function
that assigns a non-negative real number or +∞ to (certain) subsets of a
set X. It must assign 0 to the empty set and be countably additive: if
we consider a large subset Y of X that we decompose in smaller disjoint
subsets, the measure Y will necessarilly be the sum of the measures of the
smaller subsets. Probability theory strongly relies on the notion of measure.
Probability theory considers measures that assign to the whole set the size 1,
and considers measurable subsets to be events whose probability is given by
the measure. In this appendix, our aim is to recall some basic facts related
to measuretheory and probability.

B.1 σ-algebra

Let Ω be the fundamental set of all possible outcomes of a random exper-
iment. The aim of probability theory is to quantify the occurence of some
subsets of Ω, called events. We consider for instance all possible outcome of
a dice throw. In this case, the fundamental set Ω will be constituted by the
outcomes

Ω = {1, 2, 3, 4, 5, 6}.
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Events can be defined as subsets of Ω. For instance, the event ”the out-
come of the dice throw is 5” simply corresponds to the subset {5}. This
approach allows us to consider more complicated events. For instance, the
event ”the outcome of the dice throw is NOT 5” corresponds to the subset
{1, 2, 3, 4, 6} = {5}c. Similarly, the event ”the outcome of the dice throw is
strictly less than 5” corresponds to the subset {1, 2, 3, 4}. In general, we can
note than the conjonction or on the contrary the disjonction of events, as
well as the negation of events, are events too. In mathematical terms, the
set of all events thus verifies the algebraic properties of the σ- algebra.

Definition B.1.1 A σ-algebra A on Ω is a class of subsets of Ω such that
- ∅ ∈ A,
- If A ∈ A, then Ac ∈ A,
- For all countable family I, if for all i ∈ I, Ai ∈ A, ∪i∈IA ∈ A.
The set Ω along with its σ-algebra A is called the measurable space (Ω,A).

Problem B.1.1 Show that a σ-algebra is stable by intersection.

Problem B.1.2 Let Ω be some fundamental set. Check that (Ω,P(Ω)) is a
measurable space, where P(Ω) denotes the set of all subsets of Ω.

For non countable fundamental sets, the σ-algebra (Ω,P(Ω)) can remain
highly complicated. Therefore, one often considers simpler σ-algebra gener-
ated by some class of subsets of Ω.

Definition B.1.2 The σ-algebra generated by a class C of subsets of Ω is the
smallest σ-algebra containing C. In particular, when Ω = Rd, the σ-algebra
B(Rd) generated by the open sets of Rd is called the Borelien σ-algebra of Rd.

B.2 Measures and probability

A measure is simply a functional that associates to each element of a σ-
algebra a positive real number. The area in R2 is a simple example of a
measure defined on the measurable space (R2,B(R2)).

Definition B.2.1 Let (Ω,A) be a measurable space. A measure on (Ω,A)
is a function m : A → R+ ∪∞ such that
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- m(∅) = 0.
- m is σ-additive, meaning that

m

(
∪+∞
i=1 Ai

)
=

+∞∑
i=1

m(Ai)

with Ai ∩ Aj = ∅ if i 6= j.

A measure is said to be finite if the measure of the whole space is finite:
m(Ω) <∞. In particular, a probability measure is a measure such that the
measure of the fundamental space is m(Ω) = 1. If we go back to our first
example of a dice throw, the probability that the results belongs to the set
Ω = {1, 2, 3, 4, 5, 6} is indeed 1 and the probability measure of each subset is
simply interpreted as the probability of the corresponding event.

Problem B.2.1 Let P be a probability measure on some measurable space
(Ω,A) and {Ai} be some family of events. Show that:
- if Ai ⊂ Aj, then p(Ai) ≤ p(Aj)
- p(∪iAi) ≤

∑
i p(Ai).

An example of measure is provided by the Dirac measure δx associated
to x:

δx(y) = 1 if y = x, 0 otherwise.

Another fundamental example is the indicative function of the subset A of
Ω.

1A(x) = 1 if x ∈ A, 0 otherwise.

B.3 Lebesgue measure

Let (Rd,B(Rd)) be the euclidean measurable space of dimension d with its
Borel σ-algebra. A Radon measure on B(Rd) is a measure m such that for
all bounded subset B of B(Rd), m(B) <∞.

Among all Radon measures, Lebesgue measures play a particular role.
Lebesgue measures are first defined on hypercubes of Rd to be

µ(Q) = (x0
1 − x0

0)..(xd1 − xd0),
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where Q is the hypercube [x0
0, x

0
1]× ...× [xd0, x

d
1], and can next be generalized

to any subset in B(Rd). In R3 (resp. R2), the Lebesgue measure of a domain
is simply its volume (resp. area).

One can easily check that the Lebesgue measure has the property to be
isometry-invariant. For instance, in the plane R2, if we translate and/or
rotate some domain, its area remains unchanged. In addition, we have the
fundamental result:

Theorem B.3.1 Let ν be some Radon measure on (Rd,B(Rd)). If ν is
isometry-invariant, then there exist a real number λ > 0 such that ν = λµd,
where µd is the Lebesgues measure on (Rd,B(Rd)).

B.4 Measurable functions and random vari-

ables

Definition B.4.1 Let f : X → Y be some function between two measurable
spaces (X,X ) and (Y,Y). f is said to be measurable if for all element B of
the σ-algebra Y, f−1(B) is an element of the σ-algebra X .

In practice, most usual functions are measurable. In particular, all continu-
ous functions from Rd to Rd′ are measurable for the Borel σ-algebra.

In probability theory, a random variable is a measurable function from
the fundamental set Ω of all possible outcomes of some random experiment.
As an example, we consider the events constituted by two dice rollings. The
function

f : (n1, n2) ⊂ Ω× Ω→ n1 + n1 ∈ N

which associates their sum to the results of two dice rollings is a random
variable on Ω× Ω.

B.5 Probability density

A direct application of measure theory is the construction of integrals with
respect to some measures. A complete exposition of this construction is out
of the scope of this appendix, and we refer the readers interested by these
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topics to the vast literature on the subject. In this paragraph, we briefly
consider the case of probabilities defined by a density functional.

We consider the measurable space (Rd,B(R)). Let p : Rd → R a non-
negative function such that ∫

Rd

p(r)dr = 1,

dr being the Lebesgue measure on Rd. The measure of each Borel set A of
Rd is defined to be

P (A) =

∫
A

p(r)dr.

It is clear that the functional P : B(Rd) → R+ is a probability measure.
The function p is the density associated to the probability P and can be
interpreted as follows:

p(x)dx = P ([x, x+ dx]).

Let f be a random variable on the mesured space (Rd,B(R), P ). The expec-
tation of f is given by

E[f ] =

∫
R
f(r)p(r)dr.

Similarly, its variance is

var[f ] =

∫
R
(f(r)− E[f ])2p(r)dr.

An example of probability density is provided by the uniform law on some
interval [a, b] of R. For the uniform law, the probability density is

p(x) =
1

b− a
.

Hence, we find, for all c such that a ≤ x ≤ b,

P{X > x} =

∫ b

x

dx

b− a
=
b− x
b− a

.

Another fundamental example of probability density is provided by the gamma
distribution. The gamma distribution is characterized by two parameters,
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namely the shape parameter k and the scale parameter λ. Its density is
given by

p(x) =
xk−1 exp(−x

λ

Γ(k)λk
.

Problem B.5.1 Calculate the expectation and the variance of the gamma
law.

B.6 Notes

The lecture notes of Le Gall [19] provide a very good introduction to measure,
integration and probability theory.
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