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2

Mathematical Morphology for
Boolean Lattices

J.SERRA

2.1 SUMMARY OF BOOLEAN LATTICES

In this chapter we shall add the properties of distributivity and complementa-
tion to the complete lattice. The new structure is called a complete Boolean
lattice, or complete Boolean algebra. These new properties, especially the
latter, enrich the space directly, with their qualities, and indirectly, by
creating a space of points E, underlying the lattice . This appears clearly in
the following review.

Modular lattices, distributive lattices

In any lattice #, for all triplets X, Y, Z, we have

(2.1 XV(YNZ)<(XVYINXVZ),
and in particular

(2.2) X< Y=2XVIANLD)SXVY)ANZ

The lattice is called modular when in (2.2) the second inclusion is an equality,
and distributive when the more general relation (2.1) is an equality. Any
distributive lattice is modular and, by duality, will satisfy the following
relation, which corresponds to (2.1):

XA(YVZ)=(XAY)V(XAZ).
A lattice is distributive if and only if

XNZ=YNMNZ,

XVvZ-= szlz’xz Y,

and modular if and only if this implication holds when X and Y are
comparable elements.
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Theorem 2.6 Let [I',} be a family of structuring functions on E depending
on a parameter \ = 0 such that the class T\(x), N < N, x € X is inductive for
inclusion (i.e. closed under 1), and such that for x € E we have

T, =T, A>M\u>0,

the locus of points x, such that T'y(x,) is maximal in X defines the skeleton
S(X), which is given by

S(X) = U (0, MX)/ 7. X)) 0 < X < Al

As an example, consider the family of Euclidean structuring functions I', @ x
— B, (x) that was introduced in Section 2.2. We shall see (Chapter 11) thatin
R if we take B, to be compact discs then the conditions of Theorem 2.6 are
satisfied. To digitize a skeleton is not an easy task. Several algorithms have
been proposed. A very strong one will be developed in Chapter 13; another,
which is more classical, less accurate, and takes longer to implement, is
known as homotopic thinning (Serra, 1982a, p. 395) (cf. Fig. 2.6).

Fig. 2.6 Approximation of a skeleton by homotopic thinning. The least contact
between two leaves modifies the homotopy, and since this is preserved in thinning (as
well as in the skeleton), long unwanted lines result.

2.6 CONNECTIVITY

The development that we present here is a continuation of a remark by
Matheron (1985a), which was itself the development of the concept of the
increasing partition in a lattice (Serra, 1984).

Definition 2.7 We call ¥ a connected class on Z(E) when it is made up of
parts of E such that
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(i) O € €and forall x € E, {x} € ;
(ii) for each family C;in %, N C, + @ implies U C; € Z.

There is no particular reason why the class # should be closed under union.
However, if we let %, denote the subclass of C € £ that contain a given point
X,

%,=[C:xeCC ¥},

then the union of each non-empty family of elements of % is again in %,
because of (ii). In other words, the class

#, = £.U (0],

T
closed under union, defines the opening vy, whose invariant sets constitute
#, . It is called the connected opening of origin x. For all x € Z(F) we have

(2.20) 1.(X)=U{C:Ce¥%,xeCC X}

If x & X then v,(X) is empty. Otherwise we would always have x € v.(X) and
therefore v.(X) # @, since {x] € £. Thus

v(X)# D e xeXexeyX)ek.

We then say that v, (X) is the connected component of X containing x or
marked by x.

Theorem 2.8 The datum of a connected class € on a Boolean algebra 7(E)
is equivalent to the family of openings v, such that

(iii) for all x € E we have v.(x) = {x};

(iv) forall A C E, x, y € E, v,(A) and v,(A) are equal or disjoint, i.e.

¥.(A4) N ,(4) # @ = 7,(4) = v,(A);
(v) forall A C Eandall x € E, we havex ¢ A=~ ,(A) = O.
Proof First we show that the datum of % brings us to the openings 7,.

Axiom (iii) results from {x] € Z. To prove (iv), note that v (X) N v,(X) # @
implies

C=vX)Uy,(X)e X, with C C X.
On the other hand, v,(X) being non-empty gives
xey (X)=xeC=Ce %,=C C v/(X)=7,(X) C 7.(X).

We show the reverse inclusion, and thus equality, in the same way.
Conversely, suppose that we define the class £ as the family of invariant
sets of the ,, i.e.
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% = {(y(X),xeX, X C E}.

For X = @ we find y,(@) = @ € %. For X = {x} axiom (iii) implies that v, (x)
= {x] € %, and axiom (i) is satisfied. Now let C; be a family with non-empty
intersectionin Zand xe N C,. As C; € %, we can find a point y, for each i such
that C; = v, (C,). But x € C;; therefore, from (iii), {x} = v,(x) C v,(C;). Thus
7,(C;) and v, (C;) contain point x, and from (iv) we have C;, = v,(C)) =
1.(C;). So U C; = U +,(C,) is invariant under -y, and belongs to the class Z.
Thus we have (ii).

We still have to prove that the connected openings associated with this class
¥ coincide with the v, themselves, i.e. to identify the following two classes:

Zr=[y:(A):v,(A) = @, A C EJ},
Z.=,(A):yeE, A€E, v,(4) D [x}}.

From axiom (iii) we have [x] € %,. Let v,(A4) be an element of % ,; thenx e
7,(A) C A implies that x € v,(A4), i.e., from axiom (iv), that y,(A4) = v,.(A).
Hence ', C £”,. Conversely, set y,(A) € .. From axiom (v), we have y,(A4)
# @; thusx € A and v,(4) D [x},i.e. €', C Z,. w

Corollary 1 Openings vy, partition any A C E into the smallest possible
number of components belonging to the class %, and this partition is
increasing in that if A C B then any connected component of A is contained
in a connected component of B.

Proof Theorem 2.8 showed that for any A C E, x, ¥y € E, openings v,(A4)
and y,(A) were either disjoint or identical. We must now show that each point
of A belongs to one of the connected openings. To begin with, take the union
of v,(A) when x spans E:

U ) = Uy (Y (@) > U U@
= U U~y@=Ud=A.

aeAd x
We also have the converse inclusion, since y,(A4) C A for all x; therefore
Uy, =1
5]
Let A, = v.(A) be the connected components obtained in this manner.

Suppose that we performed another partition of A into elements A'; € £.
Each x € A belongs to one A; and one A';; thereforex e A, N A';and A, U
A'; € Z. But since x € A, is equivalent to 4; = v,(A), it follows from (2.20)
that 4, D A; U A’;and A’; C A,. The partition of A4 into the v,(A) there-
fore produces the minimum number of connected components. Finally it is
increasing becauseif x € A, = y,(A)then A C Bimpliesx € v, (A) C v.(B),
but v, (B) is precisely a connected component of B. [ |
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Corollary 2 X is connected if and only if for all points y, and y, of X we can
find a connected component Y, included in X, that contains y, and y,.

Proof Let us fix y, and make y, = y span X. If for each y, there exists a Y,
with [y;; »;} C ¥; C X'then nY> {v,]. Since U iy =X, wehave U Y, =
X and X is connected. The converse is trivial. ' R

Corollary 3 Forall x, y € E and all X C E we have
Y€y (X) & v.(X) = 7,(X) = O,

and, in particular,

Y €7,(X) & x€7,(X).

Proof If y €v,(X)then we also have y € X; therefore y € v,(X). As v,(X)
N +v,(X) is non-empty, equality results. Conversely, if v, (X) = v,(X) # )]
then we then have y € v, (X) = v,.(X). |

Examples

(a) The connected class and the partition The definition of a partition, in
Section 1.2, seems to resemble that of the connected class. This is confirmed
by Corollary 1. In fact, this corollary shows that if we take the set A4 to be the
space E itself then the v, (E), x € E, partition E.

Conversely, it is clear that any partition 7 : £ — Z(E) generates a
connected class whose connected openings are the v,:

v, = IN T(x), xekE

(cf. Fig. 2.7). We can complicate the process by letting the mapping
I N T(x)operate on each connected component (for a given connectivity) of
any set A.
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Fig. 2.7 The connected class associated with a partition 7.
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(a) (b)

(©)

Fig. 2.8 (a) Porous medium A; (b) Connected components of 4 invariant under
the connectivity v, = ¥, I' N [, where I is the hexagonal dilation of size 3. (c) The
circled groups of pores considered as new connected components under », (Guedj,
1984).

(b) Extensive dilation and connectivity The principal idea here, which is
clearly illustrated in Fig. 2.8, consists in first taking a connected class % of
associated openings v,, and then regrouping the connected components of %
that are sufficiently close to one another. This idea generalizes the notion of
E-connectivity presented by Guedj (1985). To accomplish it, we use the
extensive dilation I' in the following manner. Let A C E be a set of connected
components A4;, and let v, I'(4) be the connected component of I'(4)
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containing the point x. We shall say that all the A; that are contained in
~v.I'(4) generate one grain. This definition is meaningful if the operator

2.21)  »(A) = v.I'(A) N AwhenxeA; r,(A) = @ whenx¢ A

is effectively a connected opening. It is clearly increasing and anti-extensive,
and it satisfies the three axioms (iii) to (v) of Theorem 2.8.

The idempotence of the operator (2.21) is less obvious. A proof of it is
given in Serra (1986a). Finally we can state the following.

Proposition 2.9 Let % be a connected class on E of associated connected
openings 7., and let T' be a structuring function such that for all x we have
x € T'(x), and v, T'(x) = I'(x). The operator

v.(A) = 7,T(A) N A whenxe A; v (A) = @ whenx & A

defines a new connected class on E, for which the v, are connected openings.

Notions derived from connectivity

Connectivity in the ordinary Euclidean sense, or in digital versions, is often

" employed in morphology. We shall see this later in reference to some metrics
(Section 4.4), and in the chapters concerned with the skeleton (11 and 13 in
particular). Moreover, we find an important example of connectivity, in the
general sense of Definition 2.7, in Section 4.3, and in Chapter 7, which is
entirely devoted to connectivity in filtering. Here are two other notions that
are derived from connectivity.

(a) Connected classes for real-valued functions We cannot directly
associate connectivity with real-valued functions on R" because they are not
structured as a Boolean lattice. We can, however, use the function f: [R” — R
to partition [R”, which permits us to associate connected components with the
support of fin R”, and indirectly with itself. The simplest example of this is to
take for partition classes the connected zones of IR” where f(x) is either =7, or
<t,.

(b) Ultimate erosions In practice, the ultimate erosion is often used to
count the number of disconnections that appear when a set X is operated on
by a sequence of erosions by a family I";\ that is decreasing and left-continuous
w.r.t. A. With this goal in mind, we use what is again called the ultimate
erosion of X, but taken in a larger sense as Z, the union of the ultimate
erosions of all connected components of the family (I',(X), 0 < N = A}
The set Z,(.X) is one of these ultimate erosions if and only if Z,(X) is a non-
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empty connected component of I"X(X ) and for all p > X\ we have I"?\[ZA( X))
= @. The ultimate erosion Z(.X) is then written

Z(X) = Y, 0 @X));x ey, (X))

2.7 CONCLUSIONS

(a) Levels of generality

The division into two levels—complete lattice, and then Boolean
algebra—may seem a bit rough. In R, for example, the space of closed sets
#, or that of the subgraphs of numerical functions of [R”*!, which both play
essential roles in Euclidean morphology, are not complemented. They are,
however, constructed from the space of points [R”, and duality with respect to
complementation is constantly invoked.

This ‘‘semicomplementation’ has the following cause. Let %' be a
complete sublattice of Z#(£), and #'c the sublattice, also complete, formed
by the complements in Z?(E) of the elements of &?’, If i is a mapping of &
into itself under which both %’ and %' are closed then the mapping

(2.21) y* = Cy C,

i.e. the dual of ¢ for complementation, also maps %' and #'« (respectively)
into themselves. We frequently meet this situation in practice. For example,
in Euclidean morphology the two classes of closed and open sets in [R” are
closed under Minkowski addition by a compact set, and the class of sub-
graphs of u.s.c. numerical functions of R"~! considered as closed sets of R",
as well as its dual for complementation, are also closed under Minkowski
addition by any compact set of R”.

Under these circumstances, the results relative to the three dualities
(Section 2.2) can be applied without change (see Section 9.4). Nevertheless,
we cannot directly transfer the notions that make use of the existence of
points, such as the skeleton or connectivity. For example, the complete lattice
“of open sets in R” does not contain the points of R”.

We could have generalized our exposition slightly and studied mappings of
a complete lattice &, into a complete lattice &2, (Chapter 1), or of #(E,) into
P(E,) (this chapter). In this case we should have lost the possibility of
comparing X with I'(X), and consequently of formulating the concept of
extensivity, which is very useful with regard to skeletons and families T',,
amongst others. This having been said, all the results of this chapter and the
first remain valid when #, is a complete sublattice of &2, (for example &, =
H(R") and &, is the class of open sets). This is by far the most useful case.



