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The Three Cubic Systems of Grids (I)The Three Cubic Systems of Grids (I)

Place a point at the center of a Euclidean unit cube. You 
can project it:

1/ on all of the six faces;

2/ on all of the eight vertices;

3/ on all of the twelve edges. 

In each case, by symmetry, all projections have a same length.
So by translation each system generates a net of vertices and
edges through the whole space, that we shall call a grid.

Place a point at the center of a Euclidean unit cube. You 
can project it:

1/ on all of the six faces;

2/ on all of the eight vertices;

3/ on all of the twelve edges. 

In each case, by symmetry, all projections have a same length.
So by translation each system generates a net of vertices and
edges through the whole space, that we shall call a grid.
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The Three Cubic Systems of Grids (II)The Three Cubic Systems of Grids (II)

In these three grids, the families of vertices admit the 
following interpretations :

• 1rst case : translations of the unit cube vertices, 
⇒ CUBIC GRID

• 2nd case : the centres of the previous cubes are added to their 
vertices,

⇒ CENTERED CUBIC GRID ( cc grid ) 

• 3rd case : the centres of the faces are added to the vertices of
the cubic grid.

⇒ FACE-CENTERED CUBIC GRID ( fcc  grid )

In these three grids, the families of vertices admit the 
following interpretations :

• 1rst case : translations of the unit cube vertices, 
⇒ CUBIC GRID

• 2nd case : the centres of the previous cubes are added to their 
vertices,

⇒ CENTERED CUBIC GRID ( cc grid ) 

• 3rd case : the centres of the faces are added to the vertices of
the cubic grid.

⇒ FACE-CENTERED CUBIC GRID ( fcc  grid )
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First NeighboursFirst Neighbours

8 neighbours
for the cc grid

6 neighbours
for the cubic grid

12 neighbours
for the fcc grid
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Cubic Grid 
Neighbours Patterns

Cubic Grid 
Neighbours Patterns

• The sixt first neighbours
generate an octahedron of
7 voxels ; by  adding :

- the 12 second neighbours, one 
finds a cuboctahedron of 19
voxels (dist. ratio: 1.41)

- and again the 8 third ones, one 
finally obtains the cube of 27
voxels (dist. ratio: 1.73).

• The sixt first neighbours
generate an octahedron of
7 voxels ; by  adding :

- the 12 second neighbours, one 
finds a cuboctahedron of 19
voxels (dist. ratio: 1.41)

- and again the 8 third ones, one 
finally obtains the cube of 27
voxels (dist. ratio: 1.73).



Ecole des Mines de Paris IWVF3, Capri, May 28-30, 1997                       J Serra 6

CC Grid 
Neighbours Patterns

CC Grid 
Neighbours Patterns

• The 8 first neighbours
generate a cube of  7 voxels;

• by  adding the 6  second
neighbours, one finds a
rhombododecahedron of 19
voxels (distance ratio 1.15);

• these rhombododecahedra
partition the space ;

• The medians of the rhombs are
not edges.

• The 8 first neighbours
generate a cube of  7 voxels;

• by  adding the 6  second
neighbours, one finds a
rhombododecahedron of 19
voxels (distance ratio 1.15);

• these rhombododecahedra
partition the space ;

• The medians of the rhombs are
not edges.
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FCC Grid 
Neighbours Patterns

FCC Grid 
Neighbours Patterns

• The 12 first neighbours
generate a cube-octahedron of  
13 voxels.

• The cube-octahedra do not fill 
the space (they leave 
octahedric holes between 
them)

• However, they generate a
regular net where all edges
have the same lenght.

• The 12 first neighbours
generate a cube-octahedron of  
13 voxels.

• The cube-octahedra do not fill 
the space (they leave 
octahedric holes between 
them)

• However, they generate a
regular net where all edges
have the same lenght.
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CC and FCC Grids : Square SectionsCC and FCC Grids : Square Sections

• In both cc-grid and cfc-grid, the sections normal to 
– the cube diagonals are composed of hexagons,
– the cube edges are composed of squares.

• The ratios between square and interplane spacings have a value 2  
for cc-grid,  and 1.41  for fcc grid

• In both cc-grid and cfc-grid, the sections normal to 
– the cube diagonals are composed of hexagons,
– the cube edges are composed of squares.

• The ratios between square and interplane spacings have a value 2  
for cc-grid,  and 1.41  for fcc grid

1 1

1
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CC and FCC Grids :
Hexagonal   Sections
CC and FCC Grids :
Hexagonal   Sections

• For the sections normal to the diagonal of the cube, we find again
a staggering effect, with now a perodicity of three.

• The ratios between hexagonal and interplane spacings are 
0.40   for cc-grid and 0.81  for fcc grid

• For the sections normal to the diagonal of the cube, we find again
a staggering effect, with now a perodicity of three.

• The ratios between hexagonal and interplane spacings are 
0.40   for cc-grid and 0.81  for fcc grid
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Steiner  DecompositionsSteiner  Decompositions

• Consider the centre  x of a cube C . By dilating 
– the three vectors from x to the faces of C, one obtains a

Cube;
– the four vectors from x to the vertices of C, one generates a

Rhombododecahedron ;
– the six vectors from x to the edges of C, one obtains a

Tetrekaidecahedron;
– the two tetrehedra built on the diagonals of C, one obtains a 

Cube-octahedron.

• Consider the centre  x of a cube C . By dilating 
– the three vectors from x to the faces of C, one obtains a

Cube;
– the four vectors from x to the vertices of C, one generates a

Rhombododecahedron ;
– the six vectors from x to the edges of C, one obtains a

Tetrekaidecahedron;
– the two tetrehedra built on the diagonals of C, one obtains a 

Cube-octahedron.
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Steiner  Decompositions (contd )Steiner  Decompositions (contd )

• Cube :

C = (     ) ⊕ (     ) ⊕ (     )
• Cube-octahedron :

D = (     ) ⊕ (     )
• Rhombododecahedron :

R = (     ) ⊕ (     ) ⊕ (     ) ⊕ (     ) 

• Cube :

C = (     ) ⊕ (     ) ⊕ (     )
• Cube-octahedron :

D = (     ) ⊕ (     )
• Rhombododecahedron :

R = (     ) ⊕ (     ) ⊕ (     ) ⊕ (     ) 1  .
.  0
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Steiner  Decompositions (contd )Steiner  Decompositions (contd )

(   )⊕(   )⊕(   )⊕(   )⊕(   )⊕(   )0  1
.   .

0 -1
.   .

0  .
1  .

0  .
-1  .

.   0
0  .

0  .
.  0

By dilation of the six basic
vectors of the f.c.c. grid , one
obtains the tetrakaidecahedron
( and not the cube-octahedron,
which is not Steiner).
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Staggering the GridsStaggering the Grids

• For both polyhedra R and D, the previous decompositions generate 
the staggering by a 45° turn of the grid, e.g.

D = ( ) ∪∪∪∪ ( ) ∪∪∪∪ ( )
• By so doing, we leave inside holes, or, equivalently,we drop half of

the voxels. Alernatively, we can build more condensed R and D as
follows

upper and lower planes ( ) odd central plane ( )
upper and lower planes ( ) even central plane ( )

• For both polyhedra R and D, the previous decompositions generate 
the staggering by a 45° turn of the grid, e.g.

D = ( ) ∪∪∪∪ ( ) ∪∪∪∪ ( )
• By so doing, we leave inside holes, or, equivalently,we drop half of

the voxels. Alernatively, we can build more condensed R and D as
follows

upper and lower planes ( ) odd central plane ( )
upper and lower planes ( ) even central plane ( )
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DirectionsDirections

• Unlike the unit disc, the unit sphere cannot be divided into as
many sectors as we want.

• The 3-D sphere can be partitionned only into 2, 4, 6, 8, 12, and 20
equal solid angles.

• The axes of the 6, 8 and 12 solid angles coincide with the
directions of the first neighbours in the cubic, cc and fcc grids 
respectively. Therefore, they can be accessed digitally.

• The finest equidistributed digital set of directions is written : 

(   ) ; (   ) ; (   ) ; (   ) ; (   ) ; (   )

• Unlike the unit disc, the unit sphere cannot be divided into as
many sectors as we want.

• The 3-D sphere can be partitionned only into 2, 4, 6, 8, 12, and 20
equal solid angles.

• The axes of the 6, 8 and 12 solid angles coincide with the
directions of the first neighbours in the cubic, cc and fcc grids 
respectively. Therefore, they can be accessed digitally.
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Cube-octahedral  DilationCube-octahedral  Dilation

a ) : Series of 74 cross sections of
expanded Polystyrene ( from Shell)

cube-octahedral dilation
of size 5 of a )
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Cube-octahedral  closingCube-octahedral  closing

a ) Initial image cube-octahedral closing
of size 12 of a )
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Cubic  DilationCubic  Dilation

cubic dilation of size 5 of a )a )
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Space GraphsSpace Graphs

• In R3 , a space graph is
– a set X of points ;
– a collection E of edges, i.e. of lines homotopic to the segment 

[0,1] . Both ends of each edge belong to X , and two edges may 
possibly meet at their extremities only ;

– a collection F of  faces, i.e. of surfaces homotopic to the closed
unit disc. The contours of the faces are exclusively edges, and
two faces may meet along edges only ;

– a set P of  blocks, formed by the connected components of the 
space that remain when all points edges and faces have been 
removed.

• In R3 , a space graph is
– a set X of points ;
– a collection E of edges, i.e. of lines homotopic to the segment 

[0,1] . Both ends of each edge belong to X , and two edges may 
possibly meet at their extremities only ;

– a collection F of  faces, i.e. of surfaces homotopic to the closed
unit disc. The contours of the faces are exclusively edges, and
two faces may meet along edges only ;

– a set P of  blocks, formed by the connected components of the 
space that remain when all points edges and faces have been 
removed.
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Euler -Poincaré NumberEuler -Poincaré Number

• Space graphs are the turning point between Euclidean and Digital
spaces. Defined in R3 , they can be reinterpreted in Z3 , and the 
derived notions are meaningful in both spaces.

• It is in particular the case for the Euler-Poincaré Number ν (Y)
of the set Y = X ∪∪∪∪ E ∪∪∪∪ F formed by the points, edges and faces 
of space graph X . It is equal to

ν (Y) = N (vertices) + N (faces) - N (edges) - N (blocks)

• From a digital point of view, the problem consists then to 
associate convenient space graphs with the sets under study.

• Space graphs are the turning point between Euclidean and Digital
spaces. Defined in R3 , they can be reinterpreted in Z3 , and the 
derived notions are meaningful in both spaces.

• It is in particular the case for the Euler-Poincaré Number ν (Y)
of the set Y = X ∪∪∪∪ E ∪∪∪∪ F formed by the points, edges and faces 
of space graph X . It is equal to

ν (Y) = N (vertices) + N (faces) - N (edges) - N (blocks)

• From a digital point of view, the problem consists then to 
associate convenient space graphs with the sets under study.
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Comments on Graphs and ConnectivityComments on Graphs and Connectivity

According to the type of operation, three different levels of
connectivity may be involved:

⇒ Erosions, dilations, and derived filters, as well as skeletons
(by erosion/opening) do not need edges : one always dilates a 
set of points by a set of points .

⇒ Geodesy, reconstructions, connected components
(e.g.ultimate erosion) require grids, i.e. vertices + edges .

⇒ thinnings, thickenings, or any operator which preserves 
homotopy requires the datum of a space graph on the grid.

According to the type of operation, three different levels of
connectivity may be involved:

⇒ Erosions, dilations, and derived filters, as well as skeletons
(by erosion/opening) do not need edges : one always dilates a 
set of points by a set of points .

⇒ Geodesy, reconstructions, connected components
(e.g.ultimate erosion) require grids, i.e. vertices + edges .

⇒ thinnings, thickenings, or any operator which preserves 
homotopy requires the datum of a space graph on the grid.
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Space  Graph for the FCC Grid (I)Space  Graph for the FCC Grid (I)

We vill associate with the F.C.C grid the space graph whose:
⇒ vertices and edges are those of the grid,
⇒ faces are the elementary triangles ( but not the squares !),
⇒   blocks are the smallest tetrahedra and octahedra, i.e.

We vill associate with the F.C.C grid the space graph whose:
⇒ vertices and edges are those of the grid,
⇒ faces are the elementary triangles ( but not the squares !),
⇒   blocks are the smallest tetrahedra and octahedra, i.e.



Ecole des Mines de Paris IWVF3, Capri, May 28-30, 1997                       J Serra 22

Space  Graph for the FCC Grid (II)Space  Graph for the FCC Grid (II)

• In such a graph, the basic cube-octahedron is not a convex 
polyhedron, but admits six conic sinks. Its convex enveloppe for the 
graph, is its stellation, i.e. its circumscribed octahedron.

• Given a set X (the 1’s ) the vertices, and the edges, faces, and blocs
whose all vertices are 1’s generate the space graph of X.

• The graph associated with the 0’s is obtained by applying the same 
rule to set Xc .

• In such a graph, the basic cube-octahedron is not a convex 
polyhedron, but admits six conic sinks. Its convex enveloppe for the 
graph, is its stellation, i.e. its circumscribed octahedron.

• Given a set X (the 1’s ) the vertices, and the edges, faces, and blocs
whose all vertices are 1’s generate the space graph of X.

• The graph associated with the 0’s is obtained by applying the same 
rule to set Xc .
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Euler-Poincaré Count on FCC GridEuler-Poincaré Count on FCC Grid

• Euler-Poincaré count illustrates the role of the Space Graph. The 
events to be checked are the six following subsets of basic blocks

• The occurrences of each of them are computed and added, the first 
two ones positively, and the last four ones negatively.

• Euler-Poincaré count illustrates the role of the Space Graph. The 
events to be checked are the six following subsets of basic blocks

• The occurrences of each of them are computed and added, the first 
two ones positively, and the last four ones negatively.
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Thinnings and HomotopyThinnings and Homotopy

• Consider a neighborhood based thinning . It is homotopic when,
by changing 1→0, we do not locally modify the genus of the 
boundaries, i.e. the change must not
– open a hole, neither create a new particle;
– generate a donut of grains, or of pores;
– suppress a grain or a pore; etc..

• When the neighborhood is based on the unit digital cube-
octahedron, then one finds five candidate configurations only, up 
to rotations and complement.

• Consider a neighborhood based thinning . It is homotopic when,
by changing 1→0, we do not locally modify the genus of the 
boundaries, i.e. the change must not
– open a hole, neither create a new particle;
– generate a donut of grains, or of pores;
– suppress a grain or a pore; etc..

• When the neighborhood is based on the unit digital cube-
octahedron, then one finds five candidate configurations only, up 
to rotations and complement.
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Examples of homotopic thinningsExamples of homotopic thinnings

• Here are two candidate configurations for cube-octahedral 
homotopic thinning

• the 1’s   ;   • the 0’s  ;  and in between, a no man’s land.

For configuration b) three 0’s have to be added in the upper plane, 
and three 1’s in the lower plane, to get the stellations.

• Here are two candidate configurations for cube-octahedral 
homotopic thinning

• the 1’s   ;   • the 0’s  ;  and in between, a no man’s land.

For configuration b) three 0’s have to be added in the upper plane, 
and three 1’s in the lower plane, to get the stellations.

a) b)
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