Segmentation and Colour Models

Allan Hanbury and Jean Serra

Correlation between luminance and RGB in images of wood

- 1. Constructing the model
- A collection of randomly positioned points within some samples of wood are chosen.
- The values of Red, Green and Blue at these points are sampled
- The luminance Y is calculated at each point

$$
Y=0.30 R+0.59 G+0.11 B
$$

- Plots of R, G and B versus Y are done
- Curves of the form given below are fitted to the colours

$$
R=a_{r} Y^{c_{r}} \quad G=a_{g} Y^{c_{g}} \quad B=a_{b} Y^{c_{b}}
$$

Examples of wood images

Samples with fitted curves

Model 1

1000 points sampled from each example

Model 2

■ 2. Reconstructing a colour image from a luminance image

- For each luminance pixel, the value of R, G and B is obtained using the colour-luminance curve.

Reconstructed Images

Original

Model 1

Luminance Image

Model 2

Original

Luminance Image

Model 1

Model 2

Colour Segmentation

■ Used the k-medoid algorithm to group the samples into a number of groups

- A separate model was applied to each group

■ The k-medoid clustering algorithm

- [Kaufman \& Rousseeuw, 1990]
- an improvement on the k-means algorithm
- chooses a representative object (medoid) for each class from the data set
- A point is placed in a group if its Euclidean distance to the group medoid is smaller than the distance to the other group medoids

k-medoid algorithm applied to wood images (2 groups)

There is not a marked visual improvement in using two models for the wood images, as the single model reconstructions are already very good

The technique applied to other images

John Constable - View at Epsom (1809)

Colour - Luminance plots

2 groups

3 groups

Another example

Joseph Turner - Landscape with a river and a bay in the distance (1845)

Colour - Luminance plots

Example 3

Lionel Bicknell Constable - Near Stoke-by-Nayland (1850)

Colour - Luminance plots

