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Connectivity in MathematicsConnectivity in Mathematics

Topological Connectivity : Given a topological space E, set A⊆E is connected if 
one cannot partition it into two non empty closed sets. 

A Basic Theorem :
If {Ai} i∈ I is a family of connected sets, then 

{ ∩∩∩∩ Ai ≠ ∅≠ ∅≠ ∅≠ ∅ }  ⇒  { ⇒  { ⇒  { ⇒  { ∪∪∪∪ Ai connected }

Arcwise Connectivity (more practical for E = Rn) : A is arcwise connected if there 
exists, for each pair a,b ∈A, a continuous mapping ψ such that [ α, α, α, α, 
β ] β ] β ] β ] ∈∈∈∈R        and       f(αααα) = a  ; f (ββββ) = b

This second definition is more restrictive. However, for the open sets of Rn, 
both definitions are equivalent. 
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CriticismsCriticisms

Is  topological connectivity adapted to Image Analysis ? 
Digital versions of arcwise connectivity are extensively used:

– in 2-D : 4- and 8- connectivities (square), or 6- one (Hexagon);
– in 3-D : 6-, 12-, 26- ones (cube) and 12- one (cube-octaedron).

However :

Planar sectioning (3-D objects) as well as sampling  (sequences) tend to 
disconnect objects and trajectories, and topological connectivity does help so 
much for reconnecting them;

More generally, in Image Analysis, a convenient definition should be  operating,  
i.e. should introduce specific operations ;
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• When E is a digital metric space, and when 
δ(x) stands for the unit ball centred at point 
x, then the unit geodesic dilation is defined 
by the relation :

δδδδX((((Y)  = δ)  = δ)  = δ)  = δ ((((Y) ∩) ∩) ∩) ∩ X 

• The dilation of size n is then obtained by 
iteration :

δ(n)
X(Y)  = δ( ... δ(δ (Y) ∩ X) ∩ X ... ) ∩ X

• Note that the geodesic dilations are not
translation invariant.

(Binary) Digital Geodesic 
Dilation

(Binary) Digital Geodesic 
Dilation

X

Y

δδδδX((((Y))))

δδδδ(2)
X((((Y))))
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Binary ReconstructionBinary Reconstruction

• As the grid spacing becomes finer and 
finer, the digital geodesic dilation tends 
towards the Euclidean one when X is 
locally finite union of disjoint compact 
sets.

• In such a case, the infinite dilation of Y

δδδδX,∞ ,∞ ,∞ ,∞ (Y)  = ∪{∪{∪{∪{ δδδδX,λλλλ(Y) , λ>0 }λ>0 }λ>0 }λ>0 }

turns out to be the reconstruction of 
those connected components of set X 
that contain at least one point of set Y. 
Given Y, it is an opening of  set X.

X

Y
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Connected Opening and ConnectionConnected Opening and Connection

• When marker Y reduces to one point, x say,  the reconstruction opening

γγγγx(A) = ∪∪∪∪ δδδδA
(n) (x) 

called "point connected opening", is nothing but the connected component 
of A that contains  point x , or ∅∅∅∅ , if  x is outside from A.

• Therefore, as marker x spans  space E, it generates a family {γγγγx } of openings 
that satisfy the three following properties

i ) γγγγx(x)  = {x}    x ∈ Ε∈ Ε∈ Ε∈ Ε
ii ) γγγγy(A) and γγγγz(A)   y, z ∈ Ε ,   ∈ Ε ,   ∈ Ε ,   ∈ Ε ,   A⊆ Ε  ⊆ Ε  ⊆ Ε  ⊆ Ε  are disjoint or equal
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Binary ConnectionBinary Connection

• Definition : Let E be an arbitrary space. A connection C(E) on P(E) is a class 
of P(E)  such that 

iv ) ∅ ∈ ∅ ∈ ∅ ∈ ∅ ∈ CCCC ;    
v ) ∀ ∀ ∀ ∀ x ∈ ∈ ∈ ∈ E :  {x} ∈  ∈  ∈  ∈  CCCC ;          

( class C contains always all points of E plus the empty set)

vi ) ∀∀∀∀ {A},  A ∈ ∈ ∈ ∈ CCCC :     { ∩∩∩∩ A ≠ ∅≠ ∅≠ ∅≠ ∅ }  ⇒  { ⇒  { ⇒  { ⇒  { ∪∪∪∪ A ∈ ∈ ∈ ∈ CCCC }
( the union of elements of C whose intersection is not empty is still in C )

• Theorem : ΕΕΕΕvery family of openings {γx , x∈ E}, that satisfy the three above 
properties generates a connection, C(E) on P(E).
Conversely, every connection C on P(E) induces a unique family of openings 
satisfying i )  to  iii ). 

The  elements of  C are the invariant sets of the family {γx , x∈ E} .
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CommentsComments

• This above axiomatic and theorem were proposed in1988 by Matheron and
Serra. They had in mind 

– to formalize the reconstruction techniques,
– to make their approach free of any cumbersome topology of the 

continuous spaces,
– to encompass more than particles seen as "one piece objects",
– to design nice strong morphological filters.

But their approach was basically set wise oriented. Now, the major
use of filtering concern grey tone and colour images (and their sequences):

Can we derive from connected openings pertinent filters for grey images ?
Do we need dilation based reconstruction algorithms ?
Can we express the notion of a connection for Lattices, in general ? 
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Examples  of  ConnectionsExamples  of  Connections

• In Digital Imagery, the connected components in the senses of the
4- and 8-connectivity (square grid) ,

6-connectivity (hexagonal grid) , 
12-connectivity ( cube-octahedral grid) ,

constitute four different connections. 

• In Mathematics, both topological and arcwise connectivities generate 
connections. 

• The second generation connections ( see below)  are new connections that 
allow to consider clusters of objects as connected entities.

• Also,  the notion extends to numerical and to multi-spectral functions.

• Therefore the previous approach gathers under a unique axiomatic the various 
usual meanings of  "connectivity", plus new ones (e.g. the clusters). Note that 
no topological requirement is needed.
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Example  of  a  ConnectionExample  of  a  Connection

The following example is due to Ch. Ronse. Start from a primary connection,
and take for class C

- all points of E ; 
- and all connected sets of type that are open by a given B.

a) set A is made of 14 point components and of two larger ones;
b) under opening-closing, the point pores generate a single component.

A
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Another example of a ConnectionAnother example of a Connection

• This example ( J.Serra) does not require primary connection, but only a given 
partition of the space, indicated here by the set of lines;

• Then, the connected components  of A are the intersection between A and the 
classes of the partition

A
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Second Generation ConnectionSecond Generation Connection

Here is another example of a connection (J.Serra) which differs from the 
usual arcwise connectivities.

• Proposition1: Let δ : P(E) → P(E) be an extensive dilation that preserves 
connection C ( i.e. δ (C) ⊆ C ). Then, the inverse C'  = δ-1(C)  of  C turns out 
to be a connection on P(E), which is richer  than C.

• Proposition2 : The C- components of  δ(A),  A ∈ P(E), are exactly the 
images, under δ, of the  C '- components of A .
If γx designates the  opening of connection C, and νx that of C', we have:

ννννx(A)  = γγγγx δδδδ (A) ∩∩∩∩ A        when  x ⊆ ⊆ ⊆ ⊆ A     ;
ννννx(A)  =  ∅∅∅∅ when not.
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Application : Search for Isolated ObjectsApplication : Search for Isolated Objects

a): Initial Image b) : SKIZ and dilate of a) by a
disc of radius 10.

Comment: One want to find the particles from more than 20 pixels apart. They are the
only particles whose dilates of size 10 miss  the SKIZ of the initial image.
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Partial map of the city of NicePartial map of the city of Nice
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Houses with a Large Garden in NiceHouses with a Large Garden in Nice

b : Isolated components of a)
(according to the above algorithm)

Comment : Detail of the previous map, where one wish to know  the components of
the connection by dilation, and, among them, those which are also arwise connected. 

a ) Components for the connection
by dilation
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Connections in a  SequenceConnections in a  Sequence

a) Extracts from an image sequence

b) representation of the ping-
pong ball in the  product 
Space⊗⊗⊗⊗ Time

c) Connections after a Space⊗⊗⊗⊗ Time
dilation of size 3 (in grey, the clusters)
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Connected OperatorsConnected Operators

Definition :
• Given a connection C on P(E), an operator ψ : P(E) →P(E) is said to 

be connected when it can only keep or suppress grains and pores of the 
set A under study.
The most useful of such operations are those which, in addition, are 
increasing.

Basic properties :
• All binary reconstruction increasing operations induce on the lattices of 

numerical functions, via the cross sections, increasing connected 
operators.

• Their possible properties to be strong filters, to constitute semi-groups, 
etc.. are transmitted to the connected operators induced  on functions.
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Connection and Reconstruction OpeningConnection and Reconstruction Opening

Connection allow to express, and to generalise reconstruction openings as  follows
1) Call increasing binary criterion any mapping c: P(E) →{0,1} such that:

A⊆ B   ⇒   c(A) ≤ c(B)

2) With each criterion c associate the trivial opening γ
T
: P(E) → P(E)

γ
T

(A) = A     if    c(A) = 1
γ

T
(A) = ∅     if    c(A) = 0

3) By generalising the geodesic case, we will say that γrec is a reconstruction 
opening  according to  criterion  c when :

γγγγrec = = = = ∨∨∨∨{γγγγ
T 

γγγγ
x
, x∈∈∈∈ E }

γrec acts independently on the various components of the set under study, by 
keeping or removing them according as they satisfy the criterion, or not (e.g. 
area, Ferret diameter, volume..)
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Application: Filtering by Erosion-RecontructionApplication: Filtering by Erosion-Recontruction

• Firstly, the erosion X)Bλ suppresses the connected components of X 
that cannot contain a disc of radius λ;

• then the opening γrec(X ; Y) of marker Y = X)Bλ «re-builts»  all the 
others.

a) Initial image b) Eroded of a)
by a disc

c) Reconstruction 
of  b) inside a) 
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Application: Holes FillingApplication: Holes Filling

initial image
X

A = part of the edge 
that hits XC

reconstruction 
of  A inside XC

Comment : efficient algorithm, except for the particles that hit the
edges of the field.
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Closing by Reconstruction ; LatticesClosing by Reconstruction ; Lattices

• The closing by reconstruction ϕrec= *γrec* is defined by duality.
For example, in R2, if we take the criterion

- « to have an area ≥10 », then ϕrec(A) is the union of A and of the pores of 
A with an area ≤10; 
- or the criterion « to hit a given marker M », then ϕrec(A) is the union of A 

and of the pores of A included in Mc .

• Associated Lattices: We now consider a family {γrec
i} of openings by 

reconstruction, of criteria { ci }.Their inf ∩ γrec
i is still an opening by 

reconstruction, where each grain of A which is left must fulfil all criteria ci ,
and where the sup ∪ γrec

i is the opening where one criterion at least must be 
satisfied (dual results for the closings). Hence we may state: 

• Proposition: Openings and closing by reconstruction constitute two complete 
lattices for the usual sup and inf . 
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Strong Filters by ReconstructionStrong Filters by Reconstruction

Here are a few properties of the filters by reconstruction 

• Proposition(J.Serra) : Let γrec be a reconstruction opening on TE that does not 
create pores and ϕrec be the dual of such an opening ( not necessarily γrec). Then :

νννν = ϕϕϕϕrec γγγγrec and    µµµµ = γγγγrec ϕϕϕϕrec arestrong  filters.

In particular,  Ι∧γrecϕrec is an opening

• Proposition (J.Crespo, J.Serra) : Let {γi
rec} and  {ϕi

rec} denote a granulometry
and a (not necessarily dual) anti-granulometry, then

- the corresponding alternating sequential filters Ni and Mi are strong ; and
- both operators ΨΨΨΨn=∧∧∧∧{ϕϕϕϕiγγγγi, 1≤≤≤≤i≤≤≤≤n} and ΘΘΘΘn= ∨∨∨∨{γγγγi ϕϕϕϕi , 1≤≤≤≤i≤≤≤≤n} are strong filters.
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Semi-groups of filters by ReconstructionSemi-groups of filters by Reconstruction

• Proposition (Ph. Salembier, J.Serra): Let γrec be a reconstruction opening on 
E and ϕ be a closing that does not create particles. Then :

ϕϕϕϕ γγγγrec≤≤≤≤ γγγγrecϕϕϕϕ (  ⇔ γrecϕ γrec= ϕ γrec ⇔  ϕ γrecϕ = γrecϕ )

• Proposition (Ph. Salembier, J.Serra): Let{γi
rec} be a granulometry and {ϕi} be 

an anti-granulometry of the above types. Then:

a) for all i, both products νi = ϕiγi
rec and µi = γi

rec ϕi satisfy the relations
j≥≥≥≥i ⇒ ννννiννννj = ννννj and µµµµi µµµµj = µµµµj

b) Therefore, the associated A.S.F. Ni et Mi form a semi group
Nj Ni = Ni Nj =  N sup(i,j)       ; Mj Mi = Mi Mj = Msup(i,j)
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An Example of a Pyramid of Connected A.S.F.'sAn Example of a Pyramid of Connected A.S.F.'s

Initial Image

ASF of size 1

ASF of size 4

ASF of size 8

Flat zones connectivity, (i.e. ϕ ϕ ϕ ϕ = 0 ).
Each contour is preserved or suppressed, 
but never deformed : the initial partition
increases under the successive filterings,
which are strong and form a semi-group.
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Levelling  ILevelling  I

• Markers based openings allow to design a self-dual operator, called levelling, 
and due to  F.Meyer. Let
~ γM(A) be the union of the  grains of A that hit M ou that are adjacent to it (i.e. 
disjoint from M but whose union with a  grain of M is connected)
~ ϕM (A) be the union of A and of its pores that are included in M and non 

adjacent to Mc

• Then take the activity supremum
λ = γM . ϕM

i.e.       λ(A) ∩ A = γM ∩ A,       and         λ(A) ∩ Ac = ϕM ∩ Ac.
Levelling λλλλ acts inside A as the opening, and inside Ac as the closing.

• Self-duality: The mapping (A,M)→ λ(A,M) from P(E)× P(E)→P(E) is self-
dual. If M itself depends on A, i.e. if M = µ(A), then the levelling, as a function 
of  A only, is self-dual if and only if µ is already self-dual.
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Levellings  IILevellings  II

• The levelling of marker M extracts:     grain A1, with one of its pores ;
grain A2, without its pore ;
grain A3 .

A1

A2
A3

A4

M
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Levellings  IIILevellings  III

Here are a few nice properties of  levelling : 

• Proposition (F.Meyer): The levelling (A,M)→ λ(A,M)  is an increasing 
mapping from P(E)× P(E)→P(E); it admits the equivalent expression:

λ = γM ∪ ( *∩ ϕM)

• Proposition (G.Matheron): The two mappings 
~  A→ λΜ(A) , given M, and
~  M→ λΑ(M) , given A,          are idempotent. 

• Proposition (J.Serra): The levelling A→ λΜ(A) is a strong filter, and is equal to 
the commutative product of its two primitives 

λ = γM ◦ ϕM = ϕM ◦ γM

Therefore, it satisfies the stability relation : γx( I∪ λ ) = γx∪ γx λ , which 
preserves the sense of variation at the grains/pores junctions 
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Initial image : « Joueur de fifre », by E. MANET
Markers : Square alternated sequential filters, size 2 (non self-dual)

Initial image, 83.776 pp
flat zones : 34.835

Marker   ϕ γ
flat zones : 53.813

Marker   γ ϕ
flat zones : 53.858

Example of Levelling, IExample of Levelling, I
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Marker: extrema with a dynamics ≥≥≥≥ h  (marker invariant under duality).

h = 110 
flat zones : 65.721

Initial image 
flat zones : 34.835

h = 80
flat zones : 57.445

Example of Levelling, IIExample of Levelling, II
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Marker: Initial image, where the  h-extrema are given value zero  (self-dual 
marker)

Initial image 
flat zones : 34.835

h = 50
flat zones : 58.158

h = 80
flat zones : 59.178

Example of Levelling, IIIExample of Levelling, III
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Marker: Gaussian convolution of size 5 of the noisy image

A :initial image, with
10.000 noise points

B : Gaussian
convolution of A

A  levelled by B
flat zones : 46.900

Example of Levelling, IVExample of Levelling, IV
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Connectivity and ReconstructionConnectivity and Reconstruction

• We saw that if point x is a marker and  A a set, 
the infinite geodesic dilation  ∪∪∪∪ δδδδA

(n) (x) leads 
to the point connected opening of A  at x

γγγγx(A) = ∪∪∪∪ δδδδA
(n) (x)       ( 1)

• What happens when we replace the unit disc  δ 
by that of radius 10, for example, in Eq. (1) ?
Obviously, clusters of particles are created. 
Here two questions arise:
1- Do we obtain a new connection, i.e. which 
still segments set A ? 
2- Must we operate by means of  dilations
according to discs ?

• We saw that if point x is a marker and  A a set, 
the infinite geodesic dilation  ∪∪∪∪ δδδδA

(n) (x) leads 
to the point connected opening of A  at x

γγγγx(A) = ∪∪∪∪ δδδδA
(n) (x)       ( 1)

• What happens when we replace the unit disc  δ 
by that of radius 10, for example, in Eq. (1) ?
Obviously, clusters of particles are created. 
Here two questions arise:
1- Do we obtain a new connection, i.e. which 
still segments set A ? 
2- Must we operate by means of  dilations
according to discs ?

x
ΑΑΑΑ
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Geodesy et ConnectionsGeodesy et Connections

Curiously, the answer to these questions depends on properties of 
symmetry of the operators. A mapping ψ : P(Ε) → P(Ε)  is  
symmetrical when

x ⊆⊆⊆⊆ ψ ψ ψ ψ (y)        ⇔        ⇔        ⇔        ⇔        y ⊆⊆⊆⊆ ψ ψ ψ ψ (x) 
for all points x,y de E.

• Proposition (J.Serra) : Let δ: P(E) → P(E) be an extensive and 
symmetrical dilation, and let x ∈ E, et A ∈ P(E). Then the limit 
iteration

γγγγx(A) = ∪∪∪∪ {{{{δδδδA
(n) (x) , n > 0 }

considered as an operation on A, is a   point connected opening.

Note that the starting dilation δ does not need itself to be connected !

Curiously, the answer to these questions depends on properties of 
symmetry of the operators. A mapping ψ : P(Ε) → P(Ε)  is  
symmetrical when

x ⊆⊆⊆⊆ ψ ψ ψ ψ (y)        ⇔        ⇔        ⇔        ⇔        y ⊆⊆⊆⊆ ψ ψ ψ ψ (x) 
for all points x,y de E.

• Proposition (J.Serra) : Let δ: P(E) → P(E) be an extensive and 
symmetrical dilation, and let x ∈ E, et A ∈ P(E). Then the limit 
iteration

γγγγx(A) = ∪∪∪∪ {{{{δδδδA
(n) (x) , n > 0 }

considered as an operation on A, is a   point connected opening.

Note that the starting dilation δ does not need itself to be connected !
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Nice : Directional AlignmentsNice : Directional Alignments

a) Zone A under study
b) Reconstruction of A from A)))) 2B

by means structuring element D =
where each point indicates a unit hexagon

•
•
•

Comment : Although the structuring element D used for the reconstruction is not
connected, it generates a new  connection. For display reasons, we  the smaller 

components have been filtered out .
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On  Binary Connections :
• Morphological connectivity for sets was introduced by J.Serra and G.Matheron for 

designing strong filters {SER88,ch7}. The characteristic connected opening and the 
connections of second generation appear also for the first time in {SER88, ch2}. In 
{RON98}, Ch.Ronse proposes equivalent axiomatic, which emphasises another point 
of view, and he provides number of instructive examples.

On Connected  Operators :
• In {MEY90} and in {SAL92}, reconstruction is used as a tool to modify the

homotopy of a function, for multi-resolution purposes. The contrast opening is 
defined in {GRI92}. A systematic investigation of semi-groups and pyramids, by
Ph.Salembier and J.Serra, is given in {SER93a} and used for sequences compression 
and filtering in {MGT96}, {SAL96}, {PAR94}, {CAS97}, and {DEC97}. Nice 
properties of ∨ and ∧ were found by J.Crespo and Al {CRE95}. 

• The theory of leveling is due to F.Meyer {MEY98}, G.Matheron {MAT97}, and 
J.Serra {SER98b}. The larger class of the “grains operators” has been introduced and 
studied by H. Heijmans {HEI97}.

On  Binary Connections :
• Morphological connectivity for sets was introduced by J.Serra and G.Matheron for 

designing strong filters {SER88,ch7}. The characteristic connected opening and the 
connections of second generation appear also for the first time in {SER88, ch2}. In 
{RON98}, Ch.Ronse proposes equivalent axiomatic, which emphasises another point 
of view, and he provides number of instructive examples.

On Connected  Operators :
• In {MEY90} and in {SAL92}, reconstruction is used as a tool to modify the

homotopy of a function, for multi-resolution purposes. The contrast opening is 
defined in {GRI92}. A systematic investigation of semi-groups and pyramids, by
Ph.Salembier and J.Serra, is given in {SER93a} and used for sequences compression 
and filtering in {MGT96}, {SAL96}, {PAR94}, {CAS97}, and {DEC97}. Nice 
properties of ∨ and ∧ were found by J.Crespo and Al {CRE95}. 

• The theory of leveling is due to F.Meyer {MEY98}, G.Matheron {MAT97}, and 
J.Serra {SER98b}. The larger class of the “grains operators” has been introduced and 
studied by H. Heijmans {HEI97}.
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