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Hausdorff DistanceHausdorff Distance

• E is a metric space of distance d, and K ’ is the class of the non empty
compact sets of E. Put :

d (x, Y) = inf { d(x,y), y∈∈∈∈Y } ; x∈∈∈∈E    Y∈K∈K∈K∈K ’

Then the mapping K ’ × K ’ → R+

ρρρρ(X,Y) = max { sup d (x, Y) ; sup d (x, Y) } (Eq. 1)
is a distance, called «Hausdorff Distance», on K ’ .

• By introducing  the dilation δλ by the compact ball  Βλ (x) of centre x and 
radius λ ,  i.e.

δδδδλλλλ (X) = ∪∪∪∪{ΒΒΒΒλλλλ (x), x∈∈∈∈X}
(Eq. 1) takes the following form

ρρρρ(X,Y) = inf { λ λ λ λ : X ⊆⊆⊆⊆ δδδδλλλλ (Y) ; Y ⊆⊆⊆⊆ δδδδλλλλ (X) } .

• E is a metric space of distance d, and K ’ is the class of the non empty
compact sets of E. Put :

d (x, Y) = inf { d(x,y), y∈∈∈∈Y } ; x∈∈∈∈E    Y∈K∈K∈K∈K ’

Then the mapping K ’ × K ’ → R+

ρρρρ(X,Y) = max { sup d (x, Y) ; sup d (x, Y) } (Eq. 1)
is a distance, called «Hausdorff Distance», on K ’ .

• By introducing  the dilation δλ by the compact ball  Βλ (x) of centre x and 
radius λ ,  i.e.

δδδδλλλλ (X) = ∪∪∪∪{ΒΒΒΒλλλλ (x), x∈∈∈∈X}
(Eq. 1) takes the following form

ρρρρ(X,Y) = inf { λ λ λ λ : X ⊆⊆⊆⊆ δδδδλλλλ (Y) ; Y ⊆⊆⊆⊆ δδδδλλλλ (X) } .
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First Haudorff GeodesicFirst Haudorff Geodesic

• If it exists, a geodesic between X and Y will be a shortest segment [X,Y] 
in space K ’(E) , i.e. a family { Zα , 0≤α≤1 } of non empty compact
interpolators from X , for α= 0, to Y, for α=1.

• Proposition (1rst geodesic in KKKK ’) : Every pair (X,Y) in K ’(E) , from 
haudorff distance ρ apart, admits the following  geodesic:

{ Zαααα = δδδδαραραραρ (X) ∩∩∩∩ δδδδ(1(1(1(1−−−− α) ρα) ρα) ρα) ρ (Y)  ;   0≤≤≤≤αααα≤≤≤≤1   }

• Set Zαααα turns out to be the intersection of the dilates of X and of Y by the 
balls of radii αρ and (1- α) ρ respectively.
In particular, in Minkowki case, X⊕B(ρ/2) ∩ Y⊕B(ρ/2) is the midway
set between X and Y.

• If it exists, a geodesic between X and Y will be a shortest segment [X,Y] 
in space K ’(E) , i.e. a family { Zα , 0≤α≤1 } of non empty compact
interpolators from X , for α= 0, to Y, for α=1.

• Proposition (1rst geodesic in KKKK ’) : Every pair (X,Y) in K ’(E) , from 
haudorff distance ρ apart, admits the following  geodesic:

{ Zαααα = δδδδαραραραρ (X) ∩∩∩∩ δδδδ(1(1(1(1−−−− α) ρα) ρα) ρα) ρ (Y)  ;   0≤≤≤≤αααα≤≤≤≤1   }

• Set Zαααα turns out to be the intersection of the dilates of X and of Y by the 
balls of radii αρ and (1- α) ρ respectively.
In particular, in Minkowki case, X⊕B(ρ/2) ∩ Y⊕B(ρ/2) is the midway
set between X and Y.



J. Serra   I  S M M ‘ 98 Hausdorff  Geodesics 4

Two Examples of Midway SetsTwo Examples of Midway Sets

Comments : In both examples, the geodesic has a swelling effect. In the second
one, two fine and horizontal segments are interpolated by a thick vertical lens !

Questions : 1/ Should it be possible to approach separately the relative positions
of X and Y, and their shape differences ?

2/ Is the above geodesic the unique one ?
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Translation Effect on Z 0. 5Translation Effect on Z 0. 5

As the two sets diverge, their geodesic Zαααα becomes less and less significant .
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Reduced  Hausdorff DistanceReduced  Hausdorff Distance

• Reduced space : Let E be a compact sub-space of Rn or Zn . We will 
approach locations and shapes separately, by considering the quotient
space K1 of K ’ for the equivalence under translation (Notation : Xa
stands for the translate of X by vector a) . Put        

ρρρρ1 1 1 1 (X,Y) = inf { ρ ρ ρ ρ ( Xu ,Yv ) ,   u,v ∈∈∈∈E } Eq(2).
Since space E is compact, there exists at least one pair (Xa ,Yb ) for which
ρ = ρ1 , and this yields the following result

• Proposition (1rst geodesic on KKKK1 ) : The mapping introduced by Eq.(2)
defines a distance on the quotient space K1 . Moreover, for every pair of 
compact sets X,Y , the geodesic in K1 is nothing but the (non reduced)
geodesic of Xa ,Yb in K ’ i.e.

{ Zαααα = Xa⊕⊕⊕⊕ Bαραραραρ ∩∩∩∩ Yb⊕⊕⊕⊕ B(1-αααα)ρ ρ ρ ρ ;   0≤≤≤≤αααα≤≤≤≤1   }

In practice, a matching of the centres of X and Y is sufficent.

• Reduced space : Let E be a compact sub-space of Rn or Zn . We will 
approach locations and shapes separately, by considering the quotient
space K1 of K ’ for the equivalence under translation (Notation : Xa
stands for the translate of X by vector a) . Put        

ρρρρ1 1 1 1 (X,Y) = inf { ρ ρ ρ ρ ( Xu ,Yv ) ,   u,v ∈∈∈∈E } Eq(2).
Since space E is compact, there exists at least one pair (Xa ,Yb ) for which
ρ = ρ1 , and this yields the following result

• Proposition (1rst geodesic on KKKK1 ) : The mapping introduced by Eq.(2)
defines a distance on the quotient space K1 . Moreover, for every pair of 
compact sets X,Y , the geodesic in K1 is nothing but the (non reduced)
geodesic of Xa ,Yb in K ’ i.e.

{ Zαααα = Xa⊕⊕⊕⊕ Bαραραραρ ∩∩∩∩ Yb⊕⊕⊕⊕ B(1-αααα)ρ ρ ρ ρ ;   0≤≤≤≤αααα≤≤≤≤1   }

In practice, a matching of the centres of X and Y is sufficent.



J. Serra   I  S M M ‘ 98 Hausdorff  Geodesics 7

Reduced Distance : an ExampleReduced Distance : an Example

• The geodesics were computed when the centers of gravity of X and of Y
were superimposed (on the figure, set Y is shifted for display reasons).

• The three intermediary Zα correspond to α = { 0.25 ; 0.50 ; 0.75 }
• The residual swelling effect is more acceptable.

• The geodesics were computed when the centers of gravity of X and of Y
were superimposed (on the figure, set Y is shifted for display reasons).

• The three intermediary Zα correspond to α = { 0.25 ; 0.50 ; 0.75 }
• The residual swelling effect is more acceptable.

X Y

Z 0 .25 Z 0 .50 Z 0 .75
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Haudorff Geodesic for Convex Sets (I)Haudorff Geodesic for Convex Sets (I)

A second way to improve the geodesics is suggested by the convex sets.

• Convex case: Take for E the Euclidean space Rn , and focus on the metric 
sub-space C ’⊆K ’ of the convex compact sets. then we have :

• Proposition ( Geodesics on CCCC ’ ): let X and Y be two convex compact sets 
in Rn , then the interpolators {Cαααα } form a geodesic in space C ’ .

{Cαααα } = {( 1 - αααα )X ⊕⊕⊕⊕ ααααY ,  0≤≤≤≤αααα≤≤≤≤1  } 

A second way to improve the geodesics is suggested by the convex sets.

• Convex case: Take for E the Euclidean space Rn , and focus on the metric 
sub-space C ’⊆K ’ of the convex compact sets. then we have :

• Proposition ( Geodesics on CCCC ’ ): let X and Y be two convex compact sets 
in Rn , then the interpolators {Cαααα } form a geodesic in space C ’ .

{Cαααα } = {( 1 - αααα )X ⊕⊕⊕⊕ ααααY ,  0≤≤≤≤αααα≤≤≤≤1  } 

Examples of
geodesics Cαααα
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Haudorff Geodesic for Convex Sets (II)Haudorff Geodesic for Convex Sets (II)

Properties of geosdesic Cαααα

• Unlike the first geodesic Zα , Cα
commutes under translation,
i.e. when X is shifted by a, then
Cα (X,Y) is shifted by α.a ;

• Over C ’, geodesic Cαααα is always 
smaller than Zαααα i.e. Cαααα ⊆⊆⊆⊆ Zαααα ;

• The mapping Cα : Rn×Rn →Rn

is increasing ;

• But when X and Y are not in C ’

then Cα is no longer a geodesic ! 

Properties of geosdesic Cαααα

• Unlike the first geodesic Zα , Cα
commutes under translation,
i.e. when X is shifted by a, then
Cα (X,Y) is shifted by α.a ;

• Over C ’, geodesic Cαααα is always 
smaller than Zαααα i.e. Cαααα ⊆⊆⊆⊆ Zαααα ;

• The mapping Cα : Rn×Rn →Rn

is increasing ;

• But when X and Y are not in C ’

then Cα is no longer a geodesic ! 

Increasingness
of Geodesic Cαααα
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Second Haudorff Geodesic : General CaseSecond Haudorff Geodesic : General Case

• Proposition ( Second Geodesic on K ’ ) : Every pair (X,Y) in K ’(E),
from haudorff distance ρ apart, admits the following  geodesic:

{ Z’
αααα = δδδδαραραραρ (X) ∩∩∩∩ δδδδ(1(1(1(1−−−− α) ρα) ρα) ρα) ρ (Y) ∩∩∩∩ ( 1 - αααα )X ⊕⊕⊕⊕ ααααY ;     0≤≤≤≤αααα≤≤≤≤1   } ;

Hence, by comparison with the first geodesic Zαααα = δδδδαραραραρ (X) ∩∩∩∩ δδδδ(1(1(1(1−−−− α) ρα) ρα) ρα) ρ (Y) ,
we now have:

Z’
αααα = Zαααα ∩∩∩∩ Cαααα

• Comment : 1/ Here, not only X and Y are not necessarily convex, but
space E itself is no longer supposed to be Euclidean. 

2/ Since Cαααα commutes under translation, the above reduced approach 
is still valid : given the pair (X,Y) and their optimal translates (Xa ,Yb ),
family {Z’

αααα (Xa ,Yb ); 0≤≤≤≤αααα≤≤≤≤1} is a geodesic on the reduced spaceK1 .

• Proposition ( Second Geodesic on K ’ ) : Every pair (X,Y) in K ’(E),
from haudorff distance ρ apart, admits the following  geodesic:

{ Z’
αααα = δδδδαραραραρ (X) ∩∩∩∩ δδδδ(1(1(1(1−−−− α) ρα) ρα) ρα) ρ (Y) ∩∩∩∩ ( 1 - αααα )X ⊕⊕⊕⊕ ααααY ;     0≤≤≤≤αααα≤≤≤≤1   } ;

Hence, by comparison with the first geodesic Zαααα = δδδδαραραραρ (X) ∩∩∩∩ δδδδ(1(1(1(1−−−− α) ρα) ρα) ρα) ρ (Y) ,
we now have:

Z’
αααα = Zαααα ∩∩∩∩ Cαααα

• Comment : 1/ Here, not only X and Y are not necessarily convex, but
space E itself is no longer supposed to be Euclidean. 

2/ Since Cαααα commutes under translation, the above reduced approach 
is still valid : given the pair (X,Y) and their optimal translates (Xa ,Yb ),
family {Z’

αααα (Xa ,Yb ); 0≤≤≤≤αααα≤≤≤≤1} is a geodesic on the reduced spaceK1 .
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Comparison between Cαααα and Zαααα ∩∩∩∩ CααααComparison between Cαααα and Zαααα ∩∩∩∩ Cαααα

Pseudo- geodesic Cα α α α :::: the shape evolution is not well caught.

Reduced 2nd geodesic Z’
αααα : both swelling effect and shape

evolution are improved.

series Cαααα

series 
Z’

αααα = Zαααα ∩∩∩∩ Cαααα

(I) shapes and sizes
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Comparison between Cαααα and Zαααα ∩∩∩∩ CααααComparison between Cαααα and Zαααα ∩∩∩∩ Cαααα

(II) Connectivity
When one input at least is not convex, then Cα is no longer a geodesic (e.g.

Cα (X, X) is not X)  and yields less satisfactory results than Zα ∩ Cα .

(II) Connectivity
When one input at least is not convex, then Cα is no longer a geodesic (e.g.

Cα (X, X) is not X)  and yields less satisfactory results than Zα ∩ Cα .

Cαααα
Interpolators

Zαααα ∩∩∩∩ Cαααα
Interpolators

Set X

Set Y
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Comparison between Cαααα and Zαααα ∩∩∩∩ CααααComparison between Cαααα and Zαααα ∩∩∩∩ Cαααα

(III) Connectivity
However, the nice previous 

connectivity preservation 
fails when as soon as
homotopy becomes more
complicated.

(a) (b) two chromosoms ;

(c) (d) basic threshold of the 
bending ;

(e) Midway set according to 
the 2nd geodesic Zα ∩ Cα 

(III) Connectivity
However, the nice previous 

connectivity preservation 
fails when as soon as
homotopy becomes more
complicated.

(a) (b) two chromosoms ;

(c) (d) basic threshold of the 
bending ;

(e) Midway set according to 
the 2nd geodesic Zα ∩ Cα 

(a) (b)

(c) (d)

(e)
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Comparison between Cαααα and Zαααα ∩∩∩∩ CααααComparison between Cαααα and Zαααα ∩∩∩∩ Cαααα

(IV) Increasingness

Unlike Cα , geodesic Zα ∩ Cα
is not increasing.

Practically, what  happens if
we interpolate the homolog
pairs individually (eyes and
mouth) ?

(IV) Increasingness

Unlike Cα , geodesic Zα ∩ Cα
is not increasing.

Practically, what  happens if
we interpolate the homolog
pairs individually (eyes and
mouth) ? Young ghosts smiling,
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Comparison between Cαααα and Zαααα ∩∩∩∩ CααααComparison between Cαααα and Zαααα ∩∩∩∩ Cαααα

(IV) Increasingness

When the involved shapes are
not too tortuous, then 
increasingness is preserved.

Here, eyes and mouth have
been interpolated by using 
geodesic Zα ∩ Cα .

(IV) Increasingness

When the involved shapes are
not too tortuous, then 
increasingness is preserved.

Here, eyes and mouth have
been interpolated by using 
geodesic Zα ∩ Cα .

Young Ghosts Smiling

..and midway brother
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Hausdorff Distance by ErosionsHausdorff Distance by Erosions

Basically, the swelling effect arises because Hausdorff distance is not a self-
dual notion. A first step to offset this weakness consists the following :

• Dual Hausdorff Metric : Consider the subclass of K ’ made of regular
compact sets i.e. whose elements A satisfy the equality

Å = A
then the non negative number

σσσσ(X,Y)  = inf { λλλλ : εεεελλλλ (X)⊆⊆⊆⊆Y  ; εεεελλλλ (Y)⊆⊆⊆⊆X }
defines a Hausdorff Distance by Erosions on the regular class.

• Euclidean case : Below, we will focus on the classA of sets which are
– regular in a compact subspace E of Rn or Zn ;
– finite unions of disjoint connected sets.

Basically, the swelling effect arises because Hausdorff distance is not a self-
dual notion. A first step to offset this weakness consists the following :

• Dual Hausdorff Metric : Consider the subclass of K ’ made of regular
compact sets i.e. whose elements A satisfy the equality

Å = A
then the non negative number

σσσσ(X,Y)  = inf { λλλλ : εεεελλλλ (X)⊆⊆⊆⊆Y  ; εεεελλλλ (Y)⊆⊆⊆⊆X }
defines a Hausdorff Distance by Erosions on the regular class.

• Euclidean case : Below, we will focus on the classA of sets which are
– regular in a compact subspace E of Rn or Zn ;
– finite unions of disjoint connected sets.

_
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Interpolations for Nested SetsInterpolations for Nested Sets

Consider an ordered pair (X,Y) of sets in A(E) , e.g. with X⊆Y.

• Median element :      A point m lies at a distance  ≤λ from X iff   
m∈(X⊕λB) ; similarly, by regularity of Y, m lies at a distance  ≥λ from 
Yc iff  m∈ (Y.λB) ; hence set

M( X,Y) = ∪∪∪∪ { (X⊕⊕⊕⊕λλλλB) ∩∩∩∩ (Y....λλλλB) , λλλλ ≥≥≥≥0 }          (Eq. 3)
characterizes a median element such that

1/     X⊆⊆⊆⊆M⊆⊆⊆⊆Y ;
2/    ∂∂∂∂M is the locus of the points equidistant from X and from Yc ( the

SKIZ of X∪Yc,  in Lantuejoul’s sense) ;
3/ all the involved distances are smaller or equal to

µµµµ = inf { λλλλ : λλλλ ≥≥≥≥0 ,,,, (X⊕⊕⊕⊕λλλλB) ∩∩∩∩ (Y....λλλλB)c ≠ ∅ ≠ ∅ ≠ ∅ ≠ ∅ } .        (Eq. 4)

Consider an ordered pair (X,Y) of sets in A(E) , e.g. with X⊆Y.

• Median element :      A point m lies at a distance  ≤λ from X iff   
m∈(X⊕λB) ; similarly, by regularity of Y, m lies at a distance  ≥λ from 
Yc iff  m∈ (Y.λB) ; hence set

M( X,Y) = ∪∪∪∪ { (X⊕⊕⊕⊕λλλλB) ∩∩∩∩ (Y....λλλλB) , λλλλ ≥≥≥≥0 }          (Eq. 3)
characterizes a median element such that

1/     X⊆⊆⊆⊆M⊆⊆⊆⊆Y ;
2/    ∂∂∂∂M is the locus of the points equidistant from X and from Yc ( the

SKIZ of X∪Yc,  in Lantuejoul’s sense) ;
3/ all the involved distances are smaller or equal to

µµµµ = inf { λλλλ : λλλλ ≥≥≥≥0 ,,,, (X⊕⊕⊕⊕λλλλB) ∩∩∩∩ (Y....λλλλB)c ≠ ∅ ≠ ∅ ≠ ∅ ≠ ∅ } .        (Eq. 4)
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Median Element and Haudorff DistancesMedian Element and Haudorff Distances

• Compacity : Because of the assumptions of regularity and of finitude, the 
median element M (X,Y) belongs to A(E) , and there exists at least one
point  z on ∂∂∂∂M such that Bµ(z) hits both X and the closure of Yc .

• Proposition (Median element and distances) : Given X,Y  in A(E) , the 
median element M (X,Y) is at Haudorff dilation distance from X and
X! µµµµ B and also at Hausdorff erosion distance from Y and Y/ µµµµ B .

Note that in these results, none of the distances between X and Y intervenes 

• Weighted element : By intoducing two weights α and (1 - α) in Eq. 2 we 
generalize M (X,Y)  as follows :

Mαααα( X,Y) = ∪∪∪∪ { ( X⊕⊕⊕⊕ αλαλαλαλB ) ∩∩∩∩ ( Y.... (1 - αααα)λλλλB ) , λλλλ ≥≥≥≥0 }      0≤≤≤≤αααα≤≤≤≤1
to which is associated the minimum value µ(α), with supα { µ(α) } = ρ(X,Y).

• Compacity : Because of the assumptions of regularity and of finitude, the 
median element M (X,Y) belongs to A(E) , and there exists at least one
point  z on ∂∂∂∂M such that Bµ(z) hits both X and the closure of Yc .

• Proposition (Median element and distances) : Given X,Y  in A(E) , the 
median element M (X,Y) is at Haudorff dilation distance from X and
X! µµµµ B and also at Hausdorff erosion distance from Y and Y/ µµµµ B .

Note that in these results, none of the distances between X and Y intervenes 

• Weighted element : By intoducing two weights α and (1 - α) in Eq. 2 we 
generalize M (X,Y)  as follows :

Mαααα( X,Y) = ∪∪∪∪ { ( X⊕⊕⊕⊕ αλαλαλαλB ) ∩∩∩∩ ( Y.... (1 - αααα)λλλλB ) , λλλλ ≥≥≥≥0 }      0≤≤≤≤αααα≤≤≤≤1
to which is associated the minimum value µ(α), with supα { µ(α) } = ρ(X,Y).
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Examples of Median ElementsExamples of Median Elements

Initial sets

Midway set  C0 . 50 . 50 . 50 . 5
( commutes under
translation )

Middle element M0 . 50 . 50 . 50 . 5 Middle element M0 . 50 . 50 . 50 . 5
after shift of one set
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Another ExampleAnother Example

Conlusions : 
1/ the M αααα ’s are not geodesic sets : the midway between X and M0.5(X,Y) is not

M0.25(X,Y) ;
2/ the translation dependence is worse for the M αααα ’s than for the Z’α ’s ;
3/ but (X,Y) →M αααα (X,Y) is increasing, hence it extends easily to numerical 

functions ( see F. Meyer, S. Beucher and J.R. Casas works on the subject ) .

Conlusions : 
1/ the M αααα ’s are not geodesic sets : the midway between X and M0.5(X,Y) is not

M0.25(X,Y) ;
2/ the translation dependence is worse for the M αααα ’s than for the Z’α ’s ;
3/ but (X,Y) →M αααα (X,Y) is increasing, hence it extends easily to numerical 

functions ( see F. Meyer, S. Beucher and J.R. Casas works on the subject ) .
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