Haudorff distances and Interpolations

> Jean Serra Ecole des Mines de Paris

Hausdorff Geodesics 1

Hausdorff Distance

• E is a metric space of distance d, and \mathcal{K} is the class of the non empty compact sets of E. Put :

 $\mathbf{d} (\mathbf{x}, \mathbf{Y}) = \inf \{ \mathbf{d}(\mathbf{x}, \mathbf{y}), \mathbf{y} \in \mathbf{Y} \}; \qquad \mathbf{x} \in \mathbf{E} \quad \mathbf{Y} \in \mathcal{K}'$

Then the mapping $\mathcal{K}' \times \mathcal{K}' \rightarrow \mathbb{R}_+$

 $\rho(\mathbf{X},\mathbf{Y}) = \max \left\{ \text{ sup } \mathbf{d} (\mathbf{x},\mathbf{Y}) \text{ ; sup } \mathbf{d} (\mathbf{x},\mathbf{Y}) \right\} \qquad (Eq. \ 1)$

is a distance, called **«Hausdorff Distance»**, on \mathcal{K} '.

• By introducing the dilation δ_{λ} by the compact ball $B_{\lambda}(x)$ of centre x and radius λ , *i.e.*

 $\delta_{\lambda}(\mathbf{X}) = \cup \{\mathbf{B}_{\lambda}(\mathbf{x}), \mathbf{x} \in \mathbf{X}\}\$

(*Eq. 1*) takes the following form

 $\rho(X,Y) = inf \left\{ \ \lambda : X \subseteq \delta_{\lambda} \left(Y \right) \, ; \, Y \subseteq \delta_{\lambda} \left(X \right) \ \right\} \ .$

First Haudorff Geodesic

- If it exists, a geodesic between X and Y will be a shortest segment [X,Y] in space $\mathcal{K}'(E)$, *i.e.* a family { Z_{α} , $0 \le \alpha \le 1$ } of non empty compact *interpolators* from X, for $\alpha = 0$, to Y, for $\alpha = 1$.
- *Proposition (1rst geodesic in* \mathcal{K} '): Every pair (X,Y) in \mathcal{K} '(E), from haudorff distance ρ apart, admits the following geodesic:

 $\{ Z_{\alpha} = \delta_{\alpha\rho} (X) \cap \delta_{(1-\alpha)\rho} (Y) ; 0 \le \alpha \le 1 \}$

Set Z_α turns out to be the intersection of the dilates of X and of Y by the balls of radii αρ and (1- α) ρ respectively.
In particular, in Minkowki case, X⊕B(ρ/2) ∩ Y⊕B(ρ/2) is the *midway set* between X and Y.

Comments : In both examples, the geodesic has a *swelling* effect. In the second one, two *fine* and *horizontal* segments are interpolated by a *thick vertical* lens !

Questions : 1/ Should it be possible to approach separately the relative *positions* of X and Y, and their *shape* differences ?

2/ Is the above geodesic the unique one ?

Translation Effect on Z_{0.5}

As the two sets diverge, their geodesic Z_{α} becomes less and less significant.

Reduced Hausdorff Distance

• *Reduced space*: Let E be a compact sub-space of Rⁿ or Zⁿ. We will approach locations and shapes separately, by considering the quotient space \mathcal{K}_1 of \mathcal{K} ' for the equivalence under translation (Notation : X_a stands for the translate of X by vector a). Put

 $\rho_1(X,Y) = \inf \{ \rho(X_u,Y_v), u,v \in E \} \quad Eq(2).$

Since space E is compact, there exists at least one pair (X_a, Y_b) for which $\rho = \rho_1$, and this yields the following result

• **Proposition (1rst geodesic on \mathcal{K}_1):** The mapping introduced by **Eq.(2)** defines a **distance** on the quotient space \mathcal{K}_1 . Moreover, for every pair of compact sets X,Y, the geodesic in \mathcal{K}_1 is nothing but the (non reduced) geodesic of X_a, Y_b in \mathcal{K} ' *i.e.*

 $\{ Z_{\alpha} = X_{a} \oplus B\alpha\rho \cap Y_{b} \oplus B(1\text{-}\alpha)\rho ; 0 \le \alpha \le 1 \}$

In practice, a matching of the centres of X and Y is sufficent.

Reduced Distance : an Example

- The geodesics were computed when the centers of gravity of X and of Y were superimposed (on the figure, set Y is shifted for display reasons).
- The three intermediary Z_{α} correspond to $\alpha = \{ 0.25 ; 0.50 ; 0.75 \}$
- The residual swelling effect is more acceptable.

Haudorff Geodesic for Convex Sets (I)

A second way to improve the geodesics is suggested by the convex sets.

- *Convex case:* Take for E the Euclidean space \mathbb{R}^n , and focus on the metric sub-space $C' \subseteq \mathcal{K}'$ of the *convex* compact sets. then we have :
- **Proposition** (Geodesics on C'): let X and Y be two convex compact sets in \mathbb{R}^n , then the interpolators $\{\mathbf{C}_{\alpha}\}$ form a geodesic in space C'.

 $\{\mathbf{C}_{\alpha}\} = \{(1 - \alpha)\mathbf{X} \oplus \alpha\mathbf{Y}, 0 \le \alpha \le 1\}$

Examples of geodesics C_{α}

Haudorff Geodesic for Convex Sets (II)

Properties of geosdesic C_{α}

- Unlike the first geodesic Z_α, C_α
 commutes under translation, i.e. when X is shifted by a, then
 C_α(X,Y) is shifted by α.a;
- Over *C*', geodesic C_{α} is always smaller than Z_{α} *i.e.* $C_{\alpha} \subseteq Z_{\alpha}$;
- The mapping $C_{\alpha} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is *increasing*;
- But when X and Y are *not* in C ' then C_{α} is no longer a geodesic !

Increasingness of Geodesic C_{α}

Second Haudorff Geodesic : General Case

• **Proposition** (Second Geodesic on \mathcal{K} '): Every pair (X,Y) in \mathcal{K} '(E), from haudorff distance ρ apart, admits the following geodesic:

 $\{ Z'_{\alpha} = \delta_{\alpha\rho} (X) \cap \delta_{(1-\alpha)\rho} (Y) \cap (1-\alpha) X \oplus \alpha Y; \quad 0 \le \alpha \le 1 \};$

Hence, by comparison with the first geodesic $Z_{\alpha} = \delta_{\alpha\rho}(X) \cap \delta_{(1-\alpha)\rho}(Y)$, we now have:

$$\mathbf{Z}'_{\alpha} = \mathbf{Z}_{\alpha} \cap \mathbf{C}_{\alpha}$$

• *Comment* : 1/ Here, not only X and Y are not necessarily convex, but space E itself is no longer supposed to be Euclidean.

2/ Since C_{α} commutes under translation, the above reduced approach is still valid : given the pair (X,Y) and their optimal translates (X_a, Y_b) , family { $Z'_{\alpha}(X_a, Y_b)$; $0 \le \alpha \le 1$ } is a *geodesic* on the reduced space \mathcal{K}_1 .

Comparison between C_{α} and $Z_{\alpha} \cap C_{\alpha}$

(I) shapes and sizes

Pseudo- geodesic C_{α} : the shape evolution is not well caught.

series $\mathbf{Z}_{\alpha}^{'} = \mathbf{Z}_{\alpha} \cap \mathbf{C}_{\alpha}$

Reduced 2nd geodesic Z'_{α} : both swelling effect and shape evolution are improved.

J. Serra

Hausdorff Geodesics 11

Comparison between C_α and $Z_\alpha\cap C_\alpha$

(II) Connectivity

When one input at least is not convex, then C_{α} is no longer a geodesic (*e.g.* $C_{\alpha}(X, X)$ is not X) and yields less satisfactory results than $Z_{\alpha} \cap C_{\alpha}$.

Comparison between C_{α} and $Z_{\alpha} \cap C_{\alpha}$

(III) Connectivity

However, the nice previous connectivity preservation fails when as soon as homotopy becomes more complicated.

(a) (b) two chromosoms;

(c) (d) basic threshold of the bending ;

(e) Midway set according to the 2nd geodesic $Z_{\alpha} \cap C_{\alpha}$

Comparison between C_{α} and $Z_{\alpha} \cap C_{\alpha}$

(IV) Increasingness

Unlike C_{α} , geodesic $Z_{\alpha} \cap C_{\alpha}$ is *not increasing*.

Practically, what happens if we interpolate the homolog pairs individually (eyes and mouth) ?

Comparison between C_{α} and $Z_{\alpha} \cap C_{\alpha}$

(IV) Increasingness

When the involved shapes are not too tortuous, then increasingness is preserved.

Here, eyes and mouth have been interpolated by using geodesic $Z_{\alpha} \cap C_{\alpha}$.

Hausdorff Distance by Erosions

Basically, the swelling effect arises because Hausdorff distance is not a *self-dual* notion. A first step to offset this weakness consists the following :

• **Dual Hausdorff Metric :** Consider the subclass of \mathcal{K} ' made of regular compact sets *i.e.* whose elements A satisfy the equality

 $\mathbf{\mathring{A}} = \mathbf{A}$

then the non negative number

 $\sigma(X,Y) = \inf \{ \lambda : \varepsilon_{\lambda}(X) \subseteq Y ; \varepsilon_{\lambda}(Y) \subseteq X \}$

defines a *Hausdorff Distance by Erosions* on the regular class.

- *Euclidean case* : Below, we will focus on the class \mathcal{A} of sets which are
 - regular in a compact subspace E of R^n or Z^n ;
 - finite unions of disjoint connected sets.

Interpolations for Nested Sets

Consider an ordered pair (X,Y) of sets in $\mathcal{A}(E)$, *e.g.* with $X \subseteq Y$.

• *Median element* : A point m lies at a distance $\leq \lambda$ from X iff $m \in (X \oplus \lambda B)$; similarly, by regularity of Y, m lies at a distance $\geq \lambda$ from Y^c iff $m \in (Y \ominus \lambda B)$; hence set

 $\mathbf{M}(\mathbf{X},\mathbf{Y}) = \bigcup \{ (\mathbf{X} \oplus \lambda \mathbf{B}) \cap (\mathbf{Y} \ominus \lambda \mathbf{B}), \lambda \ge 0 \}$ (*Eq. 3*)

characterizes a median element such that

- 1/ $X \subseteq M \subseteq Y$;
- 2/ ∂M is the locus of the points equidistant from X and from Y^c (the SKIZ of X \cup Y^c, in Lantuejoul's sense);
- 3/ all the involved distances are smaller or equal to

 $\mu = \inf \{ \lambda : \lambda \ge 0, (X \oplus \lambda B) \cap (Y \ominus \lambda B)^c \neq \emptyset \}. \qquad (Eq. 4)$

Median Element and Haudorff Distances

- *Compacity*: Because of the assumptions of regularity and of finitude, the median element M (X,Y) belongs to $\mathcal{A}(E)$, and there exists at least one point z on ∂M such that $B_{\mu}(z)$ hits both X and the closure of Y^c.
- *Proposition (Median element and distances)*: Given X,Y in A(E), the median element M (X,Y) is at Haudorff *dilation* distance from X and X● μ B and also at Hausdorff *erosion* distance from Y and Y_○ μ B.

Note that in these results, none of the distances between X and Y intervenes

Weighted element : By intoducing two weights α and (1 - α) in Eq. 2 we generalize M (X,Y) as follows :

 $\mathbf{M}_{\alpha}(\mathbf{X},\mathbf{Y}) = \bigcup \left\{ \left(\mathbf{X} \oplus \alpha \lambda \mathbf{B} \right) \cap \left(\mathbf{Y} \ominus (1 - \alpha) \lambda \mathbf{B} \right), \lambda \ge 0 \right\} \qquad 0 \le \alpha \le 1$

to which is associated the minimum value $\mu(\alpha)$, with $\sup_{\alpha} \{ \mu(\alpha) \} = \rho(X, Y)$.

Examples of Median Elements

Initial sets

Midway set $C_{0.5}$ (commutes under translation)

Middle element M_{0.5}

Middle element $M_{0.5}$ after shift of one set

Another Example

Conlusions :

- 1/ the M $_{\alpha}$'s are not geodesic sets : the midway between X and M $_{0.5}(X,Y)$ is *not* $M_{0.25}(X,Y)$;
- 2/ the translation dependence is worse for the M $_{\alpha}$'s than for the Z' $_{\alpha}$'s ;
- 3/ but $(X,Y) \rightarrow M_{\alpha}(X,Y)$ is *increasing*, hence it extends easily to *numerical functions* (see F. Meyer, S. Beucher and J.R. Casas works on the subject).

References (I)

Patent No 94-14162, first application in France, nov.1994.

- **Beucher S.,** Sets, Partitions and Functions Interpolations, *in Mathematical Morphology and its applications to image and signal processing, H.Heijmans and J. Roerdink eds.* Kluwer, 1996.
- **Casas J.R.,** *Image compression based on perceptual coding techniques*, PhD thesis, UPC, Barcelona, march 1996.
- **Dougherty E.,** Application of the Hausdorff metric in gray scale morphology via truncated umbrae, *JVCIR*, **2**, 2, 1991, pp. 177-187.
- Huttenlocher D.P., Klunderman G.A., Rucklidge W.J., Comparing images using the Hausdorff distance, *IEEE PAMI*, 15, 9, sept. 1995.
- Lantuejoul Ch., La squelettisation et son application aux mesures topologiques des mosaïques polycristallines, PhD thesis, Ecole des Mines de Paris, 1978.

Matheron G., Random Sets and Integral Geometry, Wiley, 1975.

- Meyer F., A morphological interpolation method for mosaic images, *in Mathematical Morphology and its applications to image and signal processing, Maragos P. et al. eds.* Kluwer, 1996.
- Moreau P., and Ronse Ch., Generation of shading-off on images by extrapolations of Lipschitz functions, *Graph. Models and Image Processing*, **58**, 6, July 1996, pp. 314-333.
- Serra J., Equicontinuous functions: a model for mathematical morphology, *SPIE San Diego Conf.*, Vol. 1769, pp. 252-263, july 1992.
- **Serra J.,** Hausdorff Distances and Interpolations, *in Mathematical Morphology and its applications to image and signal processing, H.Heijmans and J. Roerdink eds.* Kluwer, 1996.