Haudorff distances and Interpolations

Jean Serra
Ecole des Mines de Paris

Hausdorff Distance

- E is a metric space of distance d , and \mathcal{K}^{\prime} is the class of the non empty compact sets of E. Put :

$$
\mathbf{d}(\mathbf{x}, \mathbf{Y})=\inf \{\mathbf{d}(\mathbf{x}, \mathbf{y}), \mathbf{y} \in \mathbf{Y}\} ; \quad \mathbf{x} \in \mathbf{E} \quad \mathbf{Y} \in \mathcal{K}^{\prime}
$$

Then the mapping $\mathcal{K}^{\prime} \times \mathcal{K}^{\prime} \rightarrow \mathrm{R}_{+}$

$$
\rho(\mathbf{X}, \mathbf{Y})=\max \{\sup \mathbf{d}(\mathbf{x}, \mathbf{Y}) ; \sup \mathbf{d}(\mathbf{x}, \mathbf{Y})\} \quad(E q . l)
$$

is a distance, called «Hausdorff Distance», on \mathcal{K}^{\prime}.

- By introducing the dilation δ_{λ} by the compact ball $\mathrm{B}_{\lambda}(\mathrm{x})$ of centre x and radius λ, i.e.

$$
\delta_{\lambda}(\mathbf{X})=\cup\left\{\mathrm{B}_{\lambda}(\mathbf{x}), \mathbf{x} \in \mathbf{X}\right\}
$$

(Eq. 1) takes the following form

$$
\rho(\mathbf{X}, \mathbf{Y})=\inf \left\{\lambda: \mathbf{X} \subseteq \delta_{\lambda}(\mathbf{Y}) ; \mathbf{Y} \subseteq \delta_{\lambda}(\mathbf{X})\right\} .
$$

First Haudorff Geodesic

- If it exists, a geodesic between X and Y will be a shortest segment $[\mathrm{X}, \mathrm{Y}]$ in space $\mathcal{K}^{\prime}(\mathrm{E})$, i.e. a family $\left\{\mathrm{Z}_{\alpha}, 0 \leq \alpha \leq 1\right\}$ of non empty compact interpolators from X , for $\alpha=0$, to Y , for $\alpha=1$.
- Proposition (1rst geodesic in \mathcal{K}^{\prime}) : Every pair (X, Y) in $\mathcal{K}^{\prime}(\mathrm{E})$, from haudorff distance ρ apart, admits the following geodesic:

$$
\left\{\mathbf{Z}_{\alpha}=\delta_{\alpha \rho}(\mathbf{X}) \cap \delta_{(1-\alpha) \rho}(\mathbf{Y}) ; \mathbf{0} \leq \alpha \leq \mathbf{1}\right\}
$$

- Set \mathbf{Z}_{α} turns out to be the intersection of the dilates of X and of Y by the balls of radii $\alpha \rho$ and $(1-\alpha) \rho$ respectively.
In particular, in Minkowki case, $\mathrm{X} \oplus \mathrm{B}(\rho / 2) \cap \mathrm{Y} \oplus \mathrm{B}(\rho / 2)$ is the midway set between X and Y .

Two Examples of Midway Sets

Comments : In both examples, the geodesic has a swelling effect. In the second one, two fine and horizontal segments are interpolated by a thick vertical lens !

Questions: 1/ Should it be possible to approach separately the relative positions of X and Y , and their shape differences ?

2/ Is the above geodesic the unique one ?

Translation Effect on $\mathbb{Z}_{0.5}$

As the two sets diverge, their geodesic Z_{α} becomes less and less significant.

Reduced Hausdorff Distance

- Reduced space : Let E be a compact sub-space of R^{n} or Z^{n}. We will approach locations and shapes separately, by considering the quotient space \mathcal{K}_{1} of \mathcal{K}^{\prime} for the equivalence under translation (Notation : \mathbf{X}_{a} stands for the translate of X by vector a). Put

$$
\rho_{1}(\mathbf{X}, \mathbf{Y})=\inf \left\{\rho\left(\mathbf{X}_{\mathbf{u}}, \mathbf{Y}_{\mathbf{v}}\right), \mathbf{u}, \mathbf{v} \in \mathbf{E}\right\} \quad E \boldsymbol{q}(2) .
$$

Since space E is compact, there exists at least one pair $\left(X_{a}, Y_{b}\right)$ for which $\rho=\rho_{1}$, and this yields the following result

- Proposition (1rst geodesic on \mathcal{K}_{1}) : The mapping introduced by Eq.(2) defines a distance on the quotient space \mathcal{K}_{1}. Moreover, for every pair of compact sets X, Y, the geodesic in \mathcal{K}_{1} is nothing but the (non reduced) geodesic of $\mathrm{X}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}$ in \mathcal{K}^{\prime} i.e.

$$
\left\{\mathbf{Z}_{\alpha}=\mathbf{X}_{\mathbf{a}} \oplus \mathbf{B} \alpha \rho \cap \mathbf{Y}_{\mathbf{b}} \oplus \mathbf{B}(1-\alpha) \rho ; \mathbf{0} \leq \alpha \leq \mathbf{1}\right\}
$$

In practice, a matching of the centres of X and Y is sufficent.

Reduced Distance : an Example

- The geodesics were computed when the centers of gravity of X and of Y were superimposed (on the figure, set Y is shifted for display reasons).
- The three intermediary Z_{α} correspond to $\alpha=\{0.25 ; 0.50 ; 0.75\}$
- The residual swelling effect is more acceptable.

Haudorff Geodesic for Convex Sets (I)

A second way to improve the geodesics is suggested by the convex sets.

- Convex case: Take for E the Euclidean space R^{n}, and focus on the metric sub-space $C^{\prime} \subseteq \mathcal{K}$ ' of the convex compact sets. then we have :
- Proposition (Geodesics on C^{\prime}): let X and Y be two convex compact sets in R^{n}, then the interpolators $\left\{\mathrm{C}_{\alpha}\right\}$ form a geodesic in space C^{\prime}.

$$
\left\{\mathbf{C}_{\alpha}\right\}=\{(\mathbf{1}-\alpha) \mathbf{X} \oplus \alpha \mathbf{Y}, \mathbf{0} \leq \alpha \leq \mathbf{1}\}
$$

Examples of geodesics \boldsymbol{C}_{α}

Haudorff Geodesic for Convex Sets (II)

Properties of geosdesic C_{α}

- Unlike the first geodesic $\mathrm{Z}_{\alpha}, \mathrm{C}_{\alpha}$ commutes under translation, i.e. when X is shifted by a, then $\mathrm{C}_{\alpha}(\mathrm{X}, \mathrm{Y})$ is shifted by α.a;
- Over C^{\prime}, geodesic \mathbf{C}_{α} is always smaller than \mathbf{Z}_{α} i.e. $\mathbf{C}_{\alpha} \subseteq \mathbf{Z}_{\alpha}$;
- The mapping $\mathrm{C}_{\alpha}: \mathrm{R}^{\mathrm{n}} \times \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}$ is increasing ;
- But when X and Y are not in C^{\prime} then C_{α} is no longer a geodesic!

> Increasingness of Geodesic C_{α}

Second Haudorff Geodesic : General Case

- Proposition (Second Geodesic on \mathcal{K}^{\prime}) : Every pair (X,Y) in $\mathcal{K}^{\prime}(\mathrm{E})$, from haudorff distance ρ apart, admits the following geodesic:

$$
\left\{\mathbf{Z}_{\alpha}^{\prime}=\delta_{\alpha \rho}(\mathbf{X}) \cap \delta_{(1-\alpha) \rho}(\mathbf{Y}) \cap(\mathbf{1}-\alpha) \mathbf{X} \oplus \alpha \mathbf{Y} ; \quad \mathbf{0} \leq \alpha \leq \mathbf{1}\right\} ;
$$

Hence, by comparison with the first geodesic $\mathbb{Z}_{\alpha}=\delta_{\alpha \rho}(\mathbf{X}) \cap \delta_{(1-\alpha) \rho}(\mathbf{Y})$, we now have:

$$
\mathbf{Z}_{\alpha}^{\prime}=\mathbf{Z}_{\alpha} \cap \mathbf{C}_{\alpha}
$$

- Comment : 1/ Here, not only X and Y are not necessarily convex, but space E itself is no longer supposed to be Euclidean.

2/ Since C_{α} commutes under translation, the above reduced approach is still valid : given the pair (X, Y) and their optimal translates $\left(\mathrm{X}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{b}}\right)$, family $\left\{\mathbf{Z}_{\alpha}^{\prime}\left(\mathbf{X}_{\mathrm{a}}, \mathbf{Y}_{\mathbf{b}}\right) ; \mathbf{0} \leq \boldsymbol{\alpha} \leq \mathbf{1}\right\}$ is a geodesic on the reduced space \mathcal{K}_{1}.

Comparison between C_{α} and $\mathrm{Z}_{\alpha} \cap \mathbf{C}_{\alpha}$

(I) shapes and sizes
 series C_{α}

Pseudo-geodesic C_{α} : the shape evolution is not well caught.

Reduced 2nd geodesic \mathbf{Z}_{α} : both swelling effect and shape evolution are improved.

Comparison between C_{α} and $\mathrm{Z}_{\alpha} \cap \mathrm{C}_{\alpha}$

(II) Connectivity

When one input at least is not convex, then C_{α} is no longer a geodesic (e.g. $\mathrm{C}_{\alpha}(\mathrm{X}, \mathrm{X})$ is not X$)$ and yields less satisfactory results than $\mathrm{Z}_{\alpha} \cap \mathrm{C}_{\alpha}$.

Comparison between C_{α} and $\mathrm{Z}_{\alpha} \cap \mathbf{C}_{\alpha}$

(III) Connectivity

However, the nice previous connectivity preservation fails when as soon as homotopy becomes more complicated.
(a) (b) two chromosoms ;
(c) (d) basic threshold of the bending ;
(e) Midway set according to the 2nd geodesic $\mathrm{Z}_{\alpha} \cap \mathrm{C}_{\alpha}$

Comparison between C_{α} and $\mathbb{Z}_{\alpha} \cap \mathbf{C}_{\alpha}$

(IV) Increasingness

Unlike C_{α}, geodesic $\mathrm{Z}_{\alpha} \cap \mathrm{C}_{\alpha}$ is not increasing.

Practically, what happens if we interpolate the homolog pairs individually (eyes and mouth)?

Comparison between C_{α} and $\mathbb{Z}_{\alpha} \cap \mathrm{C}_{\alpha}$

(IV) Increasingness

When the involved shapes are not too tortuous, then increasingness is preserved.

Here, eyes and mouth have been interpolated by using geodesic $\mathrm{Z}_{\alpha} \cap \mathrm{C}_{\alpha}$.

Hausdorff Distance by Erosions

Basically, the swelling effect arises because Hausdorff distance is not a selfdual notion. A first step to offset this weakness consists the following :

- Dual Hausdorff Metric : Consider the subclass of \mathcal{K}^{\prime} made of regular compact sets i.e. whose elements A satisfy the equality

$$
\bar{\AA}=\mathbf{A}
$$

then the non negative number

$$
\sigma(\mathbf{X}, \mathbf{Y})=\inf \left\{\lambda: \varepsilon_{\lambda}(\mathbf{X}) \subseteq \mathbf{Y} ; \varepsilon_{\lambda}(\mathbf{Y}) \subseteq \mathbf{X}\right\}
$$

defines a Hausdorff Distance by Erosions on the regular class.

- Euclidean case : Below, we will focus on the class \mathcal{A} of sets which are
- regular in a compact subspace E of R^{n} or Z^{n};
- finite unions of disjoint connected sets.

Interpolations for Nested Sets

Consider an ordered pair (X, Y) of sets in $\mathcal{A}(\mathrm{E})$, e.g. with $\mathrm{X} \subseteq \mathrm{Y}$.

- Median element : A point m lies at a distance $\leq \lambda$ from X iff $m \in(X \oplus \lambda B)$; similarly, by regularity of Y, m lies at a distance $\geq \lambda$ from Y^{c} iff $\mathrm{m} \in(\mathrm{Y} \ominus \lambda \mathrm{B})$; hence set

$$
\begin{equation*}
\mathbf{M}(\mathbf{X}, \mathbf{Y})=\cup\{(\mathbf{X} \oplus \lambda \mathbf{B}) \cap(\mathbf{Y} \ominus \lambda \mathbf{B}), \lambda \geq \mathbf{0}\} \tag{Eq.3}
\end{equation*}
$$

characterizes a median element such that
1/ $\mathbf{X} \subseteq \mathbf{M} \subseteq \mathbf{Y}$;
2/ $\partial \mathbf{M}$ is the locus of the points equidistant from X and from Y^{c} (the SKIZ of $\mathrm{X} \cup \mathrm{Y}^{\mathrm{c}}$, in Lantuejoul's sense) ;
3/ all the involved distances are smaller or equal to

$$
\begin{equation*}
\mu=\inf \left\{\lambda: \lambda \geq \mathbf{0},(\mathbf{X} \oplus \lambda \mathbf{B}) \cap(\mathbf{Y} \ominus \lambda \mathbf{B})^{c} \neq \varnothing\right\} . \tag{Eq.4}
\end{equation*}
$$

Median Element and Haudorff Distances

- Compacity : Because of the assumptions of regularity and of finitude, the median element $\mathrm{M}(\mathrm{X}, \mathrm{Y})$ belongs to $\mathcal{A}(\mathrm{E})$, and there exists at least one point z on $\partial \mathbf{M}$ such that $B_{\mu}(z)$ hits both X and the closure of Y^{c}.
- Proposition (Median element and distances) : Given X, Y in $\mathcal{A}(\mathrm{E})$, the median element $\mathrm{M}(\mathrm{X}, \mathrm{Y})$ is at Haudorff dilation distance from X and $\mathrm{X} \bullet \mu \mathrm{B}$ and also at Hausdorff erosion distance from Y and $\mathrm{Y} \bigcirc \mu \mathrm{B}$.
Note that in these results, none of the distances between X and Y intervenes
- Weighted element : By intoducing two weights α and $(1-\alpha)$ in Eq. 2 we generalize $\mathrm{M}(\mathrm{X}, \mathrm{Y})$ as follows :

$$
\mathbf{M}_{\alpha}(\mathbf{X}, \mathbf{Y})=\cup\{(\mathbf{X} \oplus \alpha \lambda \mathbf{B}) \cap(\mathbf{Y} \ominus(\mathbf{1}-\alpha) \lambda \mathbf{B}), \lambda \geq \mathbf{0}\} \quad \mathbf{0} \leq \alpha \leq 1
$$

to which is associated the minimum value $\mu(\alpha)$, with $\sup _{\alpha}\{\mu(\alpha)\}=\rho(\mathrm{X}, \mathrm{Y})$.

Examples of Median Elements

Initial sets

Midway set $C_{0.5}$ (commutes under translation)

Middle element $M_{0.5}$

Middle element $M_{0.5}$ after shift of one set

Another Example

Conlusions :

1/ the M_{α} 's are not geodesic sets : the midway between X and $\mathrm{M}_{0.5}(\mathrm{X}, \mathrm{Y})$ is not $\mathrm{M}_{0.25}(\mathrm{X}, \mathrm{Y})$;
2/ the translation dependence is worse for the M_{α} 's than for the Z_{α} 's ;
3/ but $(\mathrm{X}, \mathrm{Y}) \rightarrow \mathrm{M}_{\alpha}(\mathrm{X}, \mathrm{Y})$ is increasing, hence it extends easily to numerical functions (see F. Meyer, S. Beucher and J.R. Casas works on the subject).

References (I)

Patent No 94-14162, first application in France, nov. 1994.
Beucher S., Sets, Partitions and Functions Interpolations, in Mathematical Morphology and its applications to image and signal processing, H.Heijmans and J. Roerdink eds. Kluwer, 1996.
Casas J.R., Image compression based on perceptual coding techniques, PhD thesis, UPC, Barcelona, march 1996.
Dougherty E., Application of the Hausdorff metric in gray scale morphology via truncated umbrae, $J V C I R, 2,2,1991, ~ p p .177-187$.
Huttenlocher D.P., Klunderman G.A., Rucklidge W.J., Comparing images using the Hausdorff distance, IEEE PAMI, 15, 9, sept. 1995.
Lantuejoul Ch., La squelettisation et son application aux mesures topologiques des mosä̈ques polycristallines, PhD thesis, Ecole des Mines de Paris, 1978.
Matheron G., Random Sets and Integral Geometry, Wiley, 1975.

References (II)

Meyer F., A morphological interpolation method for mosaic images, in
Mathematical Morphology and its applications to image and signal processing, Maragos P. et al. eds. Kluwer, 1996.

Moreau P., and Ronse Ch., Generation of shading-off on images by extrapolations of Lipschitz functions, Graph. Models and Image Processing, 58, 6, July 1996, pp. 314-333.
Serra J., Equicontinuous functions: a model for mathematical morphology, SPIE San Diego Conf., Vol. 1769, pp. 252-263, july 1992.
Serra J., Hausdorff Distances and Interpolations, in Mathematical Morphology and its applications to image and signal processing, H.Heijmans and J. Roerdink eds. Kluwer, 1996.

