Connections for Sets and
Functions

Invited Lecturegiven at |SS-98
Amsterdam, April 21st, 1998

Jean SERRA
Ecole des Mines de Paris

J.Serra Ecole desMinesde Paris (1998) Connections and Segmentation 1



| Connectivity in Mathematics |

« Topological Connectivity : Given atopological space E, set ACE s
connected if one cannot partition it into two non empty closed sets.

« ABasic Theorem:

If {A;} 1€ | isafamily of connected sets, then
{NnA#0} O{ U A connected }

« Arcwise Connectivity (more practical for E = R") : A Is arcwise
connected If there exists, for each par ab €A, a continuous
mapping Y such that

[a,B] R and f(a)=a;f(B)=Db
This second definition Is more restrictive. However, for the open
setsof R", both definitions are equivalent.

J.Serra Ecole des Minesde Paris (1998) Connections and Segmentation 2



‘ Criticisms |

|s topological connectivity adapted to | mage Analysis ?

e Digital versions of arcwise connectivity are extensively used:

— 1n 2-D : 4- and 8- connectivities (square), or 6- one (Hexagon);
— 1n 3-D : 6-, 12-, 26- ones (cube) and 12- one (cube-octaedron).
However :

o Planar sectioning (3-D objects) as well as sampling (sequences)
tend to disconnect objects and trgectories, and topological
connectivity does help so much for reconnecting them;

 Moregeneraly, in Image Analysis, a convenient definition should
be operating, I.e. should introduce specific operations;

 Finally, the topological definition is purely set oriented, although
It would be nice to express also connectivity for functions...
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‘ L attices and Sup-generators |

A common feature to sets P(E) (E an arbitrary space) and to
functions f: E-T ( T, grey axis) Is that both form complete
lattice that are «well» sup-generated.

» A completelattice L isapartly ordered set where every family
{a} i€ | of elements admits

— asmaller upper bound Vv a, , and alarger lower bound A&, .

o A family B in L constitutes a sup-generating class when each
ac L may bewritten a=Vv {b; be B,b<a}.

 InP(E) -V and A operations become union and intersection,
- the elements of E, i.e. the points, are sup-generators.
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\Lattice of Numerical Functionsl

In order to ovoid the continuous/digital distinction, the real lines R
and Z, or any of their compact subsets, are all denoted by T. Axis
T isatotally ordered lattice, of extreme elements O et m.

 The class of functionsf : E - T, E an arbitrary space, forms a
totally distributive lattice, denoted by TE, for the product ordering

f<g iff f(X)<g(x) forall xOE,
In thislattice, the so called numerical v and A are defined by :
(VE)(X) =V f(x) and (A f)(X)=A fi(X) XxOE.
 Moreover, in TE the pulsesfunctions:
k() =t when  x=y ; k,(y) =0 when x#y
are sup-generating, i.e. every functionf iswritten as
f=Vv{k, xOE, t<f(x)}
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\Lattice of the Partitionsl

 Reminder : A Partition of space E Is
amapping D: E —P(E) such that

(1) OxOE, xUOD(x)
() Oy UE,

either D(Xx) =D(y)
or D(X) N D(y) = [

e The partitions of E form a lattice D
for the ordering in which D < D' when
each class of D isincluded in a class
of D'. The largest element of D Is E
itself, and the smallest one Is the
pulverization of E into all its points.
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The sup of the two types of
cellsisthe pentagon where
their boundaries coincide.
Theinf, smpler, is obtained
by intersecting thecdlls.
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| Connectionson a L attice |

Since the basic property of topological connectivity involves set U
and N only, we can forget all about topology and take the basic
property, expressed in the lattice framework, as a starting point.

Connection : Let £ be a complete lattice. A class C O L defines a
connection on £ when

i) oOC ;
(i) C issup-generating ;
(il) Cisconditionally closed under supremum, i.e.
hdC and Ah#0 0  vhOc.

e |n particular, points belong to all possible connections on P (E)
and pulses to all connections on functions TE. Thus they are said
to constitute canonic families S.
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‘ Connected Opening |

e Connected opening : Let C be a connection on lattice L of
canonic family §. For every s 0 S, the operation vy.: L - L
defined by

V.)=v (pOC,s<sp<sf) fOL,
IS an opening :
— of (point, pulse) marker s
— and of invariant sets {p O C, s<p} U {0O}.
Moreover, when r< s, withr, s S, then vy = v;.

* N.B. Operation y, belongs to the class of the so called openings
by reconstruction, where each connected component Is either
suppress or left unchanged. However, such openings can also be
based on criteria other than set markers (e.g. area, diamete) .
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\Characterization of a Connectionl

Conversaly, they, sinduced by connection C' do characteriseit:

* Induced Connection : let C be a sup-generating family in lattice
L. Class C defines a connection iff it coincides with invariant
sets of afamily {y,, s S} of openings such that

(iv) foralslOS, wehave y(s) =s,
(V) forall f O L, andal r,sO S, the openingsy,; (f)
and y.(f) areeither identical or digoint, I.€.
YD AY @20 0O vy = vy(),
(vi) foradlfOL,andalsOS, s«f Oyy.(f)=0

 Optimal Segmentation: the family of the maximal connected
components< f, f JL, partitions f into elementsde y(f), and
one cannot segment f with less elementsof C.
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‘ Properties of the Connections |

o Lattice of the Connections : The set of the connections that
contain the canonic sup-generating class S forms a complete
|attice where

inf{C.}=nC, & sup{C}=C{uC;}
e Connected Dilations: Let C be aconnectionand S =C a sup-

generating class. If an extensive dilation o preserves connection
onsS ,itpreservesitasoon C .

— ExX: In P(E), If the (extensive) dilates of the points are
connected, that of any connected component is connected too.

e Corollary : The erosion and the opening adjoint to o treat the
connected components of any ac £ independently of each other.
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\Application: Filtering by Erosion-Recontructionl

* Firstly, the erosion X©B, suppresses the connected
components of X that cannot contain adisc of radius A;

e then the opening y*¢(X ; Y) of marker Y = X©B, «re-builds»
al the others.

a) Initial image b) Eroded of a) ¢) Reconstruction
by a disc of b) insidea)
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\Application: Holes FiIIingl

Comment : efficient algorithm, except for the particles that
hit the edges of the field.

Initial image A = part of the edge reconstruction
X that hits X¢ of Ainside X¢€
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\Connected Operatorsl
Definition :

« An operator ¢ : L—L is sad to be connected when its
restriction to D Is extensive. The most useful of such operations
are those which, in addition, are increasing for TE .

Propertieswhen ¢ =0 :

 All binary reconstruction increasing operations induce on £, via
the cross sections, increasing connected operatorson L .

* The properties to be strong filters, to constitute semi-groups, €tc..
are also transmitted to the connected operators induced on L.

e Note that a mapping may be anti-extensive on LE, and extensive
on D (e.g.reconstruction openings). However, the reconstruction
closingson LE aredso closingson L .
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\An Example of a Pyramid of Connected A.S.F.'s |

Flat zones connectivity, (i.e. ¢ =0).

Each contour is preserved or suppressed,
but never deformed : theinitial partition
Increases under the successive filterings,
which are a strong semi-group.

ASF of size 8

ASF of size4

ASF of sizel

Initial Image
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‘ Second Generation Connection |

We will now use adilation o to create a new connections C’
from afirst one C (of associated opening y, ).

* Inverselmages: Let 6 : L— L be an extensive dilation that
preserves connection C (i.e. 8(C) O C). Then, theinverse image
C'=01C) of Cisdtill aconnection on £, whichisricher than
C,ie C 2C.

e Connected Opening : If, inaddition, L isinfinitely Vv-distributive,

then the C-components of d(a) are exactly the images of the (-
components of a. The opening v, of C’ isgiven by

v() =y, 0(a) Aa when x<a ;
v.(a) =0 when not .
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\ Application : Search for | solated Obj ectsl

Comment: One want to find the particles from more than 20 pixels apart. They
are the only connected componetsto be identical in both C'and '’ connections,
I.e. the particles whose dilates of size 10 miss the SKIZ of the initial image.

a): Initial Image b) : SKIZ and dilate of a) by a
disc of radius 10.
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‘ Application : 3-D Objects Extraction (I) |

Goal : Extract the osteocytes present in a sequence of 60
sections from confocal microscopy

* Photographsa) and b) : sections 15 and 35 respectively ;
 |Imagec) : supremum M of the 60 sections.
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Application : 3-D Objects Extraction (I 1)

e d): Thresholdc) atlevel 60; e): Connected opening of d)

 f): Infinite geodesic dilation of the thresholded sequence
(level 200) insidemask e) - perpective display -
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Another example: Connections in a
Time Seguence

Representation of the ping-
pong ball in SpacelJ Time

Connections obtained by cube
dilation of size 3in Spacel/ Time
(in grey, the clusters)
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‘ L attice of Equicontinuous Functions |

e Definition : E Is a (discrete or continuous) metric space. Choose a
positive function ¢ : R, - R, be which is continuous at the origin.
A functiong: E - T issaid to be equicontinuous of module ¢ when

[o(x) - 9(y) L= ¢ [ d(xy)] (d = distanceIn E)
The class of these functionsis denoted by G,

Lattices: For each ¢ , G, turns out to be a totally distributive
su% lattice of TE. All its elements are finite, except possibly its two
extrema.

e Convergence : In each G, the convergences in Matheron sense and
Hausdorff sense (when Iﬁ) IS compact) coincide with the pointwise
convergence, which, in addition, is uniform.

(l.e.«g, - g asn — oo » just means « g,(X) - g(x) , xe E»).
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‘ Examples of Modules I

 Constant Functions:

¢=0; 9
* Functions with a bounded variation K :
Od: ¢ (d)<k g
 Lipschitz Functions::
¢ (d)=k.d 6

e Geodesic Lipschitz Functions:
d<d, O¢ (d)=k.d

\ 4
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‘ Properties of Equicontinuous Classes |

* EBEveryG, :
- contains all constant functions;
-isself-dua (g e Gy = -g€ Gy ) ;
- Is closed under addition by any constant.

 Dilations: Gq, IS closed under the usual dilations and erosions
(Minkowski , geodesic), and all these operations are continuous;;

* Filters: hence G, Is also closed under all derived filters (openings,
closings, ASF, etc..), which turn out to be continuous operations ;

e Continuity isenlarged into module preservation, a stronger notion,
which isvalid for both continuous and digital cases.
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\Weighted Setsl

« Definition: Given a module ¢ , with each pair ( A, g ) of the
product space P(E) x G, associate the restriction g, of glIG,
to A, I.e. the function

ga(u) =g(u)  if ulA
gda(u) =0 if ulA .

By so doing, we replace the indicator function of set A by a
(variable) weight g which belongs to G, . Hence g, turns out to
be aweighted set. Asthe par (A,g) spans P(E) x G, , the g,’s
generate the set P ,(E) .

* Lattice of the Weighted Sets : Set P, (E) Is a complete lattice
for the usual ordering < ; in thislattice,
- the supremum Li(g,); of a family {(g,); , 1L} Is the
smaller element of G, which is larger than Vv(g,); on UA, .
- the Infimum, simpler, isgiven by 1(ga)i = (AG) ~ai -
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‘ Examples of Weighted Sets I

* First example: for ¢ = 0; the two sets
areflat, but with different heights :
their ¢-sup isthelr flat envelope
(continuous lines),

their ¢ -Inf Isjust the intersection
of the two functions (dark zone)

e Second example: ¢ I1sastraight line:

----------
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\Weighted Partitionsl

The welghted approach extends directly to partitions.

» Definition: A welghted partition X—- (gp), 1Sa mapping
E - P,(E) suchthat

(1) OxOE, X [ D(x)
(i) O(x,y)OE, either (gp),=(Gp)y OF (o) A (Gp)y =0
o Sub-mappings : Clearly, the sub-mappings
- X > D(X) iIsausua partition, i.e. D D

- X F(X) = V{(gp), .,y [E }(X)isausua function of TF,
so that aweighted partition may be denoted by A =( D, T ).

e Function Representation : Every functionf : E - T can be
represented, in different ways, asa v{(dp), , X LE }. It suffices
to partition f into zones on which f admits module ¢ (for
example, on which f Isconstant).
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\Lattice[ of the Weighted Partitionsl

e Theorem (J.Serra) : Denote by L the set of the weighted
partitions. Then, the relation

AN - {D<D' inD, and f<f'inTE}

defines an ordering on £ to which is associated a complete
lattice.

o SupandInf: In L, the supremum YA of family {A} admits
D = VD, for partition. Each class D(x) of D, has for weight g
the smaller ¢-continuous function larger than Vv (gp); on D(X).
The L infimum AA; is given, at each point X, by AgQp;y
restricted to ND;(X) ).

 Extrema: A, 1sthe single class partition, weighted by m, and
A, 1S the partition into al points of E, each of them being
weighted by O.

J.Serra Ecole des Minesde Paris (1998) Connections and Segmentation 26



An Exampleof Flat Weghted Partition |

« Partitions: for ¢ =0, given functionf :
- when f(x) # 0O, every subset of the flat
zone of f that contains point X can serve as
aD(x), with weight f(x); B
-when f(x) = 0, class D(x) is reduced to {x} . E

(Note that f admits a largest flat partition A)

e Ordering: thetwo largest flat partition A =
and A’ generated from theflat zonesof f and  Functionsf and f
f’ arenot comparablein L, athoughf > f’ Projection of their
(but in TE!) infimum partition
AANN

Their inf A A A" IS given by two flat sub-zones
of f’ and O elsewhere.
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\An Exampleof Y and A in £|

Comment ;. Here the weights are taken constant in each flat zone of f
andf’,i.e. ¢ = 0. Thisgenerates two weighted partitionsA and A"

a ) Non comparable
weighted partitions
A and A

b ) function associated
with supremum A vy A’

...............................

c ) function associated
with iInfimum A A A’
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\ Cylinders in £ |

» Cylinders: With any weighted set g, U P ,(E), itisaways
possible to associate aweighted partition A, asfollows

X = ga If x A
X - {x} If x LA .

A, Is composed of class g, plus a jumble of points, al
being weighted by 0. Such a partition is called a cylinder, in £,
of base A.

e Sup-generors . Every welghted partition A turns out to be the vy
of al cylinders Ay, associated with each class (gp), of A . Hence
the class of the cylindersis sup-generating.

 closure under Yy : the supremum A, =YA,; of family {A,;} of
cylinders has for partition classes { UA,, plus all {x} < [UA/]°}.
Hence A, isitsalf acylinder.
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Connections on Weighted Partitionsl

Suppose now that E is equipped with a connection C,,. If
the bases C;’ s of cylinders A are connected and if NC, # [,
then YA, Is acylinder with a connected basis. Now, such
cylinders are still sup-generating. Hence,

» Connection on L : the cylinders A- with a connected basis C
In E, generatea connection C over L .

e Associated opening : Given aweighted partition A =( D, f ),
the point opening vy, (A ) of connection C extracts the cylinder
whose base is the class D(x) of D covering point x, and
weight thevalues of f Inside D(X) .

i In L, the connected opening
at point x isacylinder.

E
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‘ Typology for the Connections on Functionsl

Module ¢ Model for G, Meaning for Function f
1) ¢=0 Constant functions
Flat zones
2) ¢ (d)sk
10
range of variation = k variation of f Is< Kk,
> and jumps from
3)d<d, U one zone to another
d) =k .d
¢ (d) Zones in which the
Lipschitz geodesic variation of f issmooth,
functions but not from one zone
g to another
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\ An Example of Jump Connection in £ |

Weigted Partitions of Burner Image

12000 T T
"c:\wmmorph\born.dat" ——

10000 r

a) Initial image: gaz burner
b) Jump of sizel12: 783 tiles

8000 r

d)

6000

Number of classes

4000

c) Jump of size 24 : 63tiles

2000

d) Number of tiles versus jump values

0 5 10 15 20 25 30 35 40
Jump Size
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Other Example of Jump Connection in L

a) Initial image: b) Jump connection of c) Skiz of the set of
polished section Sizel2: the dark points of
of alumine grains - In dark, the point Image b)

connected components
- In white, each particle
ISthe base of a cylinder
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An Example of Smooth Connectionin L (I)

Comment : the two phases of the micrograph cannot be
distinguished by means of jump connections.

a) Initial image: b) Jump connection ¢) Jump connection
rock electron of size15. of size 25.
micrograph
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‘ An Example of Smooth Connectionin L (I1) |

Comment : The smooth connection differentiates correctly
the two phases according to their roughnesses.

a) Initial image: d) smooth connection e) Filtering of Image
rock electron of slope 6 (in dark, d) which iyelds a
micrograph . union of all point correct segmentation

connected components).  of g) .
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Jump Connection on a Color Image

Methodology: A jJump connection of range 14 for the luminance yields 94
zones. Thethree color channels are averaged in each of the 94 regions.
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