Connections for Sets and Functions

Invited Lecture given at ISS-98 Amsterdam, April 21st, 1998

Jean SERRA

Ecole des Mines de Paris

Ecole des Mines de Paris (1998)

Connections and Segmentation 1

J.Serra

Connectivity in Mathematics

- **Topological Connectivity** : Given a topological space E, set $A \subseteq E$ is connected if one cannot partition it into two non empty closed sets.
- A Basic Theorem :

If $\{A_i\} i \in I$ is a family of connected sets, then $\{ \cap A_i \neq \emptyset \} \Rightarrow \{ \cup A_i \text{ connected } \}$

Arcwise Connectivity (more practical for E = Rⁿ) : A is arcwise connected if there exists, for each pair a,b ∈A, a continuous mapping ψ such that

 $[\alpha, \beta] \in \mathbb{R}$ and $f(\alpha) = a$; $f(\beta) = b$ This second definition is more restrictive. However, for the open sets of \mathbb{R}^n , both definitions are **equivalent**.

J.Serra

Criticisms

Is topological connectivity adapted to Image Analysis ?

- Digital versions of arcwise connectivity are extensively used:
 in 2-D: 4- and 8- connectivities (square), or 6- one (Hexagon);
 in 3-D: 6-, 12-, 26- ones (cube) and 12- one (cube-octaedron). *However*:
- Planar sectioning (3-D objects) as well as sampling (sequences) tend to disconnect objects and trajectories, and topological connectivity does help so much for reconnecting them;
- More generally, in Image Analysis, a convenient definition should be operating, *i.e.* should introduce specific operations ;
- Finally, the topological definition is purely set oriented, although it would be nice to express also connectivity for functions...

Lattices and Sup-generators

- A common feature to sets P(E) (E an arbitrary space) and to functions f: E→T (T, grey axis) is that both form complete lattice that are «well» sup-generated.
- A complete lattice \mathcal{L} is a partly ordered set where every family $\{a_i\} i \in I$ of elements admits
 - a smaller upper bound $\lor \mathbf{a_i}$, and a larger lower bound $\land \mathbf{a_i}$.
- A family \mathcal{B} in \mathcal{L} constitutes a **sup-generating** class when each $a \in \mathcal{L}$ may be written $\mathbf{a} = \bigvee \{\mathbf{b}; \mathbf{b} \in \mathcal{B}, \mathbf{b} \le \mathbf{a}\}$.
- In 𝒫(E) ∨ and ∧ operations become union and intersection;
 the elements of E, *i.e.* the points, are sup-generators.

Lattice of Numerical Functions

In order to ovoid the continuous/digital distinction, the real lines \overline{R} and \overline{Z} , or any of their compact subsets, are all denoted by T. Axis T is a totally ordered lattice, of extreme elements 0 et m.

• The class of functions $f : E \to T$, E an arbitrary space, forms a totally distributive **lattice**, denoted by T^E , for the product ordering $f \le g$ iff $f(x) \le g(x)$ for all $x \in E$,

In this lattice, the so called numerical \lor and \land are defined by :

 $(\lor f_i)(x) = \lor f_i(x)$ and $(\land f_i)(x) = \land f_i(x)$ $x \in E$.

• Moreover, in T^E the **pulses functions**:

 $k_{x,t}(y) = t$ when x = y; $k_{x,t}(y) = 0$ when $x \neq y$, are sup-generating, *i.e.* every function f is written as $f = \bigvee \{ k_{x,t}, x \in E, t \leq f(x) \}$

Ecole des Mines de Paris (1998)

Connections and Segmentation 5

J.Serra

Lattice of the Partitions

• *Reminder* : A **Partition** of space E is a mapping D: $E \rightarrow \mathcal{P}(E)$ such that

(i) $\forall x \in E, x \in D(x)$ (ii) $\forall (x, y) \in E,$ either D(x) = D(y)or $D(x) \cap D(y) = \emptyset$

• The partitions of E form a lattice \mathcal{D} for the ordering in which $D \leq D'$ when each class of D is included in a class of D'. The largest element of \mathcal{D} is E itself, and the smallest one is the pulverization of E into all its points.

The sup of the two types of cells is the pentagon where their boundaries coincide. The inf, simpler, is obtained by intersecting the cells.

Connections on a Lattice

Since the basic property of topological connectivity involves set \cup and \cap only, we can forget all about topology and take the basic property, expressed in the lattice framework, as a starting point.

Connection : Let \mathcal{L} be a complete lattice. A class $C \subseteq \mathcal{L}$ defines a **connection** on \mathcal{L} when

- (*i*) $0 \in C$;
- (*ii*) C is sup-generating;
- (*iii*) *C* is **conditionally closed** under supremum, *i.e.*

 $\mathbf{h}_{\mathbf{i}} \in C \text{ and } \wedge \mathbf{h}_{\mathbf{i}} \neq 0 \implies \forall \mathbf{h}_{\mathbf{i}} \in C.$

• In particular, points belong to all possible connections on $\mathcal{P}(E)$ and pulses to all connections on functions T^E . Thus they are said to constitute **canonic families** *S*.

Connected Opening

• *Connected opening* : Let *C* be a connection on lattice *L* of canonic family *S*. For every $s \in S$, the operation $\gamma_s : \mathcal{L} \to \mathcal{L}$ defined by

 $\gamma_{s}(\mathbf{f}) = \lor (\mathbf{p} \in C, s \le \mathbf{p} \le \mathbf{f}) \qquad \mathbf{f} \in \mathcal{L},$

is an *opening* :

- of (point, pulse) marker s
- and of **invariant sets** $\{p \in C, s \le p\} \cup \{0\}$. Moreover, when $r \le s$, with $r, s \in S$, then $\gamma_r \ge \gamma_s$.
- *N.B.* Operation γ_s belongs to the class of the so called **openings by reconstruction**, where each connected component is either suppress or left unchanged. However, such openings can also be based on criteria other than set markers (*e.g.* area, diameter).

Characterization of a Connection

Conversely, the γ_s 's induced by connection *C* do characterise it :

• Induced Connection : let C be a sup-generating family in lattice \mathcal{L} . Class C defines a connection iff it coincides with invariant sets of a family $\{\gamma_s, s \in S\}$ of openings such that

(*iv*) for all $s \in S$, we have $\gamma_s(s) = s$,

(v) for all $f \in \mathcal{L}$, and all $r, s \in S$, the openings $\gamma_r(f)$ and $\gamma_s(f)$ are either identical or disjoint, *i.e.*

 $\begin{array}{l} \gamma_{\mathbf{r}}(\mathbf{f}) \land \gamma_{\mathbf{s}}(\mathbf{f}) \neq \mathbf{0} \implies \gamma_{\mathbf{r}}(\mathbf{f}) = \gamma_{\mathbf{s}}(\mathbf{f}) ,\\ (vi) \quad \text{for all } \mathbf{f} \in \mathcal{L} \text{, and all } \mathbf{s} \in S \text{, } \mathbf{s} \leq \mathbf{f} \implies \gamma_{\mathbf{s}}(\mathbf{f}) = \mathbf{0} \end{array}$

• **Optimal Segmentation:** the family of the maximal connected components $\leq f, f \in \mathcal{L}$, **partitions** f into elements de $\gamma_s(f)$, and one cannot segment f with **less** elements of C.

Properties of the Connections

• Lattice of the Connections : The set of the connections that contain the canonic sup-generating class S forms a complete lattice where

 $\inf \{C_i\} = \cap C_i \quad \text{et} \quad \sup \{C_i\} = C\{\cup C_i\}$

- Connected Dilations : Let C be a connection and $S \subseteq C$ a supgenerating class. If an extensive dilation δ preserves connection on S, it preserves it also on C.
 - Ex: in $\mathcal{P}(E)$, if the (extensive) dilates of the points are connected, that of any connected component is connected too.
- *Corollary* : The erosion and the opening adjoint to δ treat the connected components of any $a \in \mathcal{L}$ independently of each other.

Application: Filtering by Erosion-Recontruction

- Firstly, the erosion $X \ominus B_{\lambda}$ suppresses the connected components of X that cannot contain a disc of radius λ ;
- then the opening $\gamma^{rec}(X ; Y)$ of marker $Y = X \ominus B_{\lambda}$ «re-builds» all the others.

a) Initial image

b) Eroded of a) by a disc c) Reconstruction of b) inside a)

Ecole des Mines de Paris (1998)

Application: Holes Filling

Comment : *efficient algorithm, except for the particles that hit the edges of the field.*

Connected Operators

Definition:

• An operator $\psi : \mathcal{L} \to \mathcal{L}$ is said to be **connected** when its restriction to \mathcal{D} is extensive. The most useful of such operations are those which, in addition, are **increasing** for T^E .

Properties when $\phi = 0$:

- All **binary** reconstruction increasing operations induce on \mathcal{L} , via the cross sections, increasing connected operators on \mathcal{L} .
- The properties to be strong filters, to constitute semi-groups, etc.. are also transmitted to the connected operators induced on \mathcal{L} .
- Note that a mapping may be anti-extensive on L^E , and extensive on \mathcal{D} (*e.g.* reconstruction openings). However, the reconstruction closings on L^E are also closings on \mathcal{L} .

An Example of a Pyramid of Connected A.S.F.'s

Flat zones connectivity, (i.e. $\varphi = 0$). Each contour is preserved or suppressed, but never deformed : the initial partition increases under the successive filterings, which are a strong semi-group.

ASF of size 8

ASF of size 4

ASF of size 1

Initial Image

Ecole des Mines de Paris (1998)

Second Generation Connection

We will now use a dilation δ to create a new connections *C*' from a first one *C* (of associated opening γ_x).

- *Inverse Images* : Let $\delta : \mathcal{L} \to \mathcal{L}$ be an extensive dilation that preserves connection C (*i.e.* $\delta(C) \subseteq C$). Then, the inverse image $C := \delta^{-1}(C)$ of C is still a **connection** on \mathcal{L} , which is **richer** than $C, i.e. C' \supseteq C$.
- *Connected Opening*: If, in addition, *L* is infinitely ∨-distributive, then the *C*-components of δ(a) are exactly the **images of the** *C*'-components of a. The opening v_x of *C*' is given by

$$v_x(a) = \gamma_x \,\delta(a) \wedge a$$
 when $x \le a$;
 $v_x(a) = 0$ when not.

Application : Search for Isolated Objects

Comment: One want to find the particles from more than 20 pixels apart. They are the only connected componets to be identical in both C and C' connections, i.e. the particles whose dilates of size 10 miss the SKIZ of the initial image.

a): Initial Image

b) : SKIZ and dilate of a) by a disc of radius 10.

Ecole des Mines de Paris (1998)

Goal : Extract the osteocytes present in a sequence of 60 sections from confocal microscopy

- **Photographs a) and b) : sections 15 and 35 respectively**;
- Image c) : supremum M of the 60 sections.

J.Serra

- d): Threshold c) at level 60; e): Connected opening of d)
- *f*): Infinite geodesic dilation of the thresholded sequence (level 200) inside mask *e*) perpective display -

J.Serra

Ecole des Mines de Paris (1998)

Another example: Connections in a Time Sequence

Representation of the pingpong ball in Space \otimes Time

Connections obtained by cube dilation of size 3 in Space⊗ Time (in grey, the clusters)

Part of the sequence

J.Serra

Ecole des Mines de Paris (1998)

Lattice of Equicontinuous Functions

• *Definition :* E is a (discrete or continuous) metric space. Choose a positive function $\phi : R_+ \to R_+$ be which is continuous at the origin. A function $g : E \to T$ is said to be equicontinuous of module ϕ when

 $|\mathbf{g}(\mathbf{x}) - \mathbf{g}(\mathbf{y})| \le \varphi [\mathbf{d}(\mathbf{x},\mathbf{y})]$ (*d* = distance in *E*)

The class of these functions is denoted by G_{ϕ}

- G_{ϕ} *Lattices:* For each ϕ , G_{ϕ} turns out to be a totally distributive sub-lattice of T^E. All its elements are finite, except possibly its two extrema.
- *Convergence* : In each G_{ϕ} the convergences in Matheron sense and Hausdorff sense (when E is compact) coincide with the pointwise convergence, which, in addition, is uniform.

(*i.e.* « $g_n \rightarrow g$ as $n \rightarrow \infty$ » just means « $g_n(x) \rightarrow g(x)$, $x \in E$ »).

Examples of Modules

• *Constant* Functions : $\phi = 0$; **A O** • Functions with a *bounded variation* k : $\forall \mathbf{d} : \mathbf{\phi}(\mathbf{d}) \leq \mathbf{k}$ • *Lipschitz* Functions : ϕ (d) = k.d φ • Geodesic Lipschitz Functions : $\mathbf{d} \leq \mathbf{d}_0 \implies \boldsymbol{\varphi}(\mathbf{d}) = \mathbf{k} \cdot \mathbf{d}$ d

Properties of Equicontinuous Classes

- Every G_{φ} :
 - contains all constant functions ;
 - is self-dual ($\mathbf{g} \in \mathbf{G}_{\varphi} \Leftrightarrow \mathbf{-g} \in \mathbf{G}_{\varphi}$) ;
 - is closed under addition by any constant.
- *Dilations:* G_{ϕ} is closed under the usual dilations and erosions (Minkowski, geodesic), and all these operations are continuous;
- *Filters:* hence G_{ϕ} is also closed under all derived filters (openings, closings, ASF, etc..), which turn out to be continuous operations ;
- *Continuity* is enlarged into module preservation, a stronger notion, which is valid for both continuous and digital cases .

• **Definition:** Given a module φ , with each pair (A, g) of the product space $\mathcal{P}(E) \times G_{\varphi}$ associate the restriction g_A of $g \in G_{\varphi}$ to A, *i.e.* the function

$$\begin{split} g_A(u) &= g(u) & \text{ if } u \in A \\ g_A(u) &= 0 & \text{ if } u \notin A \,. \end{split}$$

By so doing, we replace the indicator function of set A by a (variable) weight g which belongs to G_{ϕ} . Hence g_A turns out to be a **weighted set**. As the pair (A,g) spans $\mathcal{P}(E) \times G_{\phi}$, the g_A 's generate the set $\mathcal{P}_{\phi}(E)$.

• Lattice of the Weighted Sets : Set $\mathcal{P}_{\varphi}(E)$ is a complete lattice for the usual ordering \leq ; in this lattice,

- the supremum $\sqcup(g_A)_i$ of a family $\{(g_A)_i, i \in I\}$ is the smaller element of G_{φ} which is larger than $\lor(g_A)_i$ on $\cup A_i$.

- the infimum, simpler, is given by $\Box(g_A)_i = (\land g_i)_{\cap Ai}$.

Examples of Weighted Sets

First example: for φ = 0; the two sets are flat, but with different heights : their φ-sup is their flat envelope (continuous lines),

their φ -inf is just the intersection of the two functions (dark zone)

• Second example : φ is a straight line :

Weighted Partitions

The weighted approach extends directly to partitions.

- *Definition* : A weighted partition $x \to (g_D)_x$ is a mapping $E \to \mathcal{P}_{\phi}(E)$ such that
 - (i) $\forall x \in E$, $x \in D(x)$
 - (*ii*) \forall (x, y) \in E, either $(g_D)_x = (g_D)_y$ or $(g_D)_x \wedge (g_D)_y = 0$
- *Sub-mappings* : Clearly, the sub-mappings

 $-x \rightarrow D(x)$ is a usual partition, *i.e.* $D \in \mathcal{D}$

- $x \rightarrow f(x) = \bigvee \{(g_D)_y, y \in E\}(x) \text{ is a usual function of } T^E$, so that a weighted partition may be denoted by $\Delta = (D, f)$.

• *Function Representation* : Every function $f : E \to T$ can be represented, in different ways, as a $\lor \{(g_D)_x, x \in E\}$. It suffices to partition f into zones on which f admits module φ (for example, on which f is constant).

Lattice \mathcal{L} of the Weighted Partitions

• *Theorem (J.Serra)* : Denote by \mathcal{L} the set of the weighted partitions. Then, the relation

 $\Delta \preceq \Delta' \iff \{ \mathbf{D} \leq \mathbf{D}' \text{ in } \mathcal{D}, \text{ and } \mathbf{f} \leq \mathbf{f}' \text{ in } \mathbf{T}^{\mathbf{E}} \}$

defines an ordering on \mathcal{L} to which is associated a complete lattice.

- Sup and Inf : In \mathcal{L} , the supremum $\Upsilon \Delta_i$ of family $\{\Delta_i\}$ admits $D = \lor D_i$ for partition. Each class D(x) of D, has for weight g the smaller φ -continuous function larger than $\lor (g_D)_i$ on D(x). The \mathcal{L} infimum $\land \Delta_i$ is given, at each point x, by $\land g_{Di(x)}$ restricted to $\cap D_i(x)$.
- *Extrema* : Δ_{max} is the single class partition, weighted by m, and Δ_{\min} is the partition into all points of E, each of them being weighted by 0.

J.Serra

An Example of Flat Weighted Partition

- **Partitions** : for $\varphi = 0$, given function f :
 - when $f(x) \neq 0$, every subset of the flat zone of f that contains point x can serve as a D(x), with weight f(x);
 - when f(x) = 0, class D(x) is reduced to $\{x\}$.

(Note that f admits a largest flat partition Δ)

 Ordering : the two largest flat partition Δ and Δ' generated from the flat zones of f and f ' are not comparable in *L*, although f > f' (but in T^E !)

Their inf $\Delta \land \Delta$ ' is given by two flat sub-zones of f' and 0 elsewhere.

Functions f and f' Projection of their infimum partition $\Delta \land \Delta'$

J.Serra

An Example of \curlyvee and \land in \mathcal{L}

Comment : Here the weights are taken constant in each flat zone of f and f, i.e. $\varphi = 0$. This generates two weighted partitions Δ and Δ '.

Cylinders in \mathcal{L}

• *Cylinders* : With any weighted set $g_A \in \mathcal{P}_{\varphi}(E)$, it is always possible to associate a weighted partition Δ_A as follows

 $x \to g_A$ if $x \in A$ $x \to \{x\}$ if $x \notin A$.

 Δ_A is composed of class g_A plus a **jumble of points**, all being weighted by 0. Such a partition is called a **cylinder**, in \mathcal{L} , of base A.

- Sup-generors : Every weighted partition Δ turns out to be the Υ of all cylinders Δ_{Dx} associated with each class $(g_D)_x$ of Δ . Hence the class of the cylinders is **sup-generating**.
- *closure under* Υ : the supremum $\Delta_A = \Upsilon \Delta_{Ai}$ of family $\{\Delta_{Ai}\}$ of cylinders has for partition classes $\{\cup A_i, \text{ plus all } \{x\} \subseteq [\cup A_i]^c\}$. Hence Δ_A is itself a cylinder.

Connections on Weighted Partitions

Suppose now that E is equipped with a connection C_0 . If the bases C_i 's of cylinders Δ_{C_i} are connected and if $\cap C_i \neq \emptyset$, then $\Upsilon \Delta_{C_i}$ is a cylinder with a connected basis. Now, such cylinders are still sup-generating. Hence,

- Connection on \mathcal{L} : the cylinders Δ_{C} with a connected basis C in E, generate a connection C over \mathcal{L} .
- Associated opening: Given a weighted partition $\Delta = (\mathbf{D}, \mathbf{f})$, the point opening $\gamma_x(\Delta)$ of connection C extracts the cylinder whose base is the class D(x) of D covering point x, and weight the values of f inside D(x).

In \mathcal{L} , the connected opening at point x is a cylinder.

Ecole des Mines de Paris (1998)

Typology for the Connections on Functions

<u>Module φ</u>

Model for G_o

 $I) \quad \varphi = 0$ **Constant functions**

2) $\phi(\mathbf{d}) \leq \mathbf{k}$

Meaning for Function f

Functions whose range of variation = k Zones in which the variation of f is $\leq k$, and jumps from one zone to another

Zones in which the variation of f is smooth, but not from one zone to another

 ϕ (d) = k .d^{α} 0

Lipschitz geodesic functions

3) $\mathbf{d} \leq \mathbf{d}_0 \implies$

d

Ecole des Mines de Paris (1998)

An Example of Jump Connection in \mathcal{L}

"c:\wmmorph\born.dat" -Number of classes *d*) Jump Size

a) Initial image: gaz burner
b) Jump of size 12 : 783 tiles
c) Jump of size 24 : 63 tiles
d) Number of tiles versus jump values

J.Serra

Ecole des Mines de Paris (1998)

Other Example of Jump Connection in \mathcal{L}

a) Initial image: polished section of alumine grains

b) Jump connection of size 12 :
in dark, the point connected components
in white, each particle is the base of a cylinder

c) Skiz of the set of the dark points of image b)

An Example of Smooth Connection in \mathcal{L} (I)

Comment : the two phases of the micrograph cannot be distinguished by means of jump connections.

a) Initial image: rock electron micrograph

b) Jump connection of size 15. c) Jump connection of size 25.

An Example of Smooth Connection in \mathcal{L} (II)

Comment : The smooth connection differentiates correctly the two phases according to their roughnesses.

a) Initial image: rock electron micrograph . d) smooth connection of slope 6 (in dark, union of all point connected components).

e) Filtering of Image
d) which iyelds a
correct segmentation
of a).

Connections and Segmentation 35

Jump Connection on a Color Image

Methodology: A jump connection of range 14 for the luminance yields 94 zones. The three color channels are averaged in each of the 94 regions.

J.Serra

Ecole des Mines de Paris (1998)

References (I)

On binary Connections :

- J. Serra, Chapitre 2 dans *Image Analysis and Mathematical Morphology*, vol. 2, J. Serra (ed.), London: Acad. Press, 1988.
- **C. Ronse,** Set theoretical algebraic approaches to connectivity in continuous or digital spaces. JMIV, Vol.8, 1998, pp.41-58.

On Connections for Numerical Functions :

- J. Serra Connectivity on Complete Lattices. *Journal of Mathematical Imaging and Vision* 9, (1998), pp 231-25.
- J. Serra Connections for sets and Functions (to appear in Fundamenta Informaticae).
- **J. Serra** Equicontinuous functions: a model for mathematical morphology, *SPIE San Diego Conf*.Vol. 1769, pp. 252-263, july 1992.
- **G. Matheron** Les treillis compacts. Tech. rep. N-23/90/G, *Ecole des Mines de Paris*, Part 1, 1990, part 2, 1996.

On examples :

• **S. Beucher D. Gorokhovic and J. Serra** Micromorph, logiciel de Morphologie Mathematique, *Transvalor* 1997.

References (II)

On Connected Operators :

- J. Crespo, J. Serra, R.W. Schafer Theoretical aspects of morphological filters by reconstruction. *Signal Processing*, 1995, Vol. 47, No 2, pp. 201-225.
- H.J.A.M Heijmans, Connected Operators. *Tech. Rep. CWI n° PNA-R9708*, April 1997
- **B. Marcotegui, F. Meyer** Morphological segmentation of image sequences. In *Mathematical Morphology and its applications to image processing*, J.Serra and P. Soille, eds. Kluwer, 1994, pp. 101-108.
- J. Serra, Ph. Salembier Connected operators and pyramids. *In SPIE, Vol. 2030, morphological image processing*, San Diego, July 1993, pp. 65-76.
- **F. Meyer**, 1/ From connected operators to levelings ; 2/ The levelings, *in Mathematical Morphology and its applications to image and signal processing, H. Heijmans and J. Roerdink eds.*, Kluwer, 1998, pp 191-206.
- **G. Matheron**, Les nivellements, *Technical report, Centre de Morphologie Mathématique*, 1997.
- **P. Salembier and A. Oliveras** Practical extensions of connected operators, *in Mathematical Morphology and its applications to image and signal processing, Maragos P. et al., eds.* Kluwer, 1996, pp. 97-110.