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Connectivity in MathematicsConnectivity in Mathematics

• Topological Connectivity : Given a topological space E, set A⊆E is 
connected if one cannot partition it into two non empty closed sets. 

• A Basic Theorem :
If {Ai} i∈ I is a family of connected sets, then 

{ ∩∩∩∩ Ai ≠ ∅≠ ∅≠ ∅≠ ∅ }  ⇒  { ⇒  { ⇒  { ⇒  { ∪∪∪∪ Ai connected }

• Arcwise Connectivity (more practical for E = Rn) : A is arcwise
connected if there exists, for each pair a,b ∈A, a continuous 
mapping ψ such that

[ α, β ] α, β ] α, β ] α, β ] ∈∈∈∈R        and       f(αααα) = a  ; f (ββββ) = b
This second definition is more restrictive. However, for the open 

sets of Rn, both definitions are equivalent. 
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CriticismsCriticisms
Is  topological connectivity adapted to Image Analysis ? 

• Digital versions of arcwise connectivity are extensively used:
– in 2-D : 4- and 8- connectivities (square), or 6- one (Hexagon);
– in 3-D : 6-, 12-, 26- ones (cube) and 12- one (cube-octaedron).

However :

• Planar sectioning (3-D objects) as well as sampling  (sequences) 
tend to disconnect objects and trajectories, and topological 
connectivity does help so much for reconnecting them;

• More generally, in Image Analysis, a convenient definition should 
be  operating,  i.e. should introduce specific operations ;

• Finally, the  topological definition is purely set oriented, although 
it would be nice to express also connectivity for functions...
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Lattices and Sup-generatorsLattices and Sup-generators

• A common feature to sets P(E) (E an arbitrary space) and to 
functions f: E→T ( T, grey axis) is that both form complete 
lattice that are «well» sup-generated.

• A complete lattice L is a partly ordered set where every family 
{ai} i∈ I of elements admits 
– a smaller upper bound ∨∨∨∨ai , and a larger lower bound ∧∧∧∧ai .

• A family B in L constitutes a sup-generating class when each
a∈ L may be written  a = ∨∨∨∨ {b ; b∈∈∈∈ BBBB , b≤≤≤≤ a }.

• In PPPP(E) - ∨∨∨∨ and ∧∧∧∧ operations become union and intersection;   
- the elements of E, i.e. the points, are  sup-generators.
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Lattice of Numerical FunctionsLattice of Numerical Functions
In order to ovoid the continuous/digital distinction, the real lines R 
and  Z, or any of their compact subsets, are all denoted by T. Axis 
T is a totally ordered lattice, of extreme elements 0 et m.

• The class of functions f : E  → T, E an arbitrary space, forms a 
totally distributive lattice, denoted by TE, for the product ordering 

f ≤ ≤ ≤ ≤ g iff f(x) ≤ ≤ ≤ ≤ g(x)   for all  x ∈∈∈∈ E ,  
In this lattice, the so called numerical ∨∨∨∨ and ∧∧∧∧ are defined by :

((((∨∨∨∨fi)(x) = ∨∨∨∨ fi(x)     and   (∧∧∧∧ fi)(x) = ∧∧∧∧ fi(x)          x ∈∈∈∈ E .

• Moreover, in TE the pulses functions:
kx,t (y)  =  t   when      x = y     ; kx,t (y)  =  0    when   x ≠ ≠ ≠ ≠ y     ,

are  sup-generating, i.e. every  function f is written as 
f =∨∨∨∨{ kx,t ,  x ∈∈∈∈ E,   t ≤ ≤ ≤ ≤ f(x) }

____
____
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Lattice of the PartitionsLattice of the Partitions

• Reminder : A Partition of space E is 
a mapping  D:  E →P(E)  such that

(i)    ∀∀∀∀ x ∈ ∈ ∈ ∈ E ,      x ∈ ∈ ∈ ∈ D(x) 
(ii) ∀∀∀∀ (x, y) ∈ ∈ ∈ ∈ E,  

either D(x) = D(y)             
or D(x) ∩∩∩∩ D(y) = ∅∅∅∅

• The partitions of E form a lattice DDDD
for the ordering in which D ≤ D' when 
each class of  D is included in a class 
of D'. The largest element of D is E 
itself, and the smallest one is the
pulverization of E into all its points.

The sup of the two types of
cells is the pentagon where
their boundaries coincide.
The inf, simpler, is obtained
by  intersecting  the cells.
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Connections on a LatticeConnections on a Lattice

Since the basic property of topological connectivity involves set ∪
and ∩ only, we can forget all about topology and take the basic 
property, expressed in the lattice framework, as a starting point. 

Connection : Let L be a complete lattice. A class C ⊆⊆⊆⊆ L defines a  
connection on L when

(i)    0 ∈∈∈∈ C C C C ;
(ii)   CCCC is sup-generating  ;

(iii)   CCCC is conditionally closed under supremum, i.e.
hi ∈ ∈ ∈ ∈ CCCC and    ∧∧∧∧ hi ≠ 0        ⇒       ≠ 0        ⇒       ≠ 0        ⇒       ≠ 0        ⇒       ∨∨∨∨ hi ∈ ∈ ∈ ∈ CCCC .

• In particular, points belong to all possible connections on P(E) 
and pulses to all connections on functions TE. Thus they are said 
to constitute canonic families SSSS.
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Connected Opening Connected Opening 

• Connected opening : Let C be a connection on lattice L of 
canonic family S. For every s ∈ S,  the operation γs : L → L
defined by

γγγγs (f) = ∨∨∨∨ ( p ∈ ∈ ∈ ∈ CCCC , s ≤ ≤ ≤ ≤ p ≤ ≤ ≤ ≤ f) f ∈∈∈∈ LLLL ,
is an opening : 

– of  (point, pulse) marker s 
– and of invariant sets {p ∈ C,  s≤ p} ∪∪∪∪ {0}.

Moreover, when  r ≤≤≤≤ s,  with r,s ∈∈∈∈ S,    then γr ≥≥≥≥ γs .

• N.B. Operation γγγγs belongs to the class of the so called  openings 
by reconstruction, where each connected component is either 
suppress or left unchanged. However, such openings can also be 
based on criteria other than set markers (e.g. area, diameter) . 
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Characterization of a ConnectionCharacterization of a Connection

Conversely, the γγγγs’s induced by connection C do characterise it : 

• Induced Connection : let C be a sup-generating family in lattice 
L. Class C defines a connection iff it coincides with invariant 
sets of a family {γs , s ∈ S} of openings such that 

(iv) for all s ∈ S ,  we have γγγγs(s) = s ,                                    
(v) for all f ∈ L ,  and all   r, s ∈ S, the openings γγγγr (f) 

and γγγγs (f)  are either identical or disjoint, i.e.
γγγγr(f) ∧∧∧∧ γγγγs (f) ≠≠≠≠ 0      ⇒⇒⇒⇒ γ γγγr (f)  = γγγγs (f) ,

(vi) for all f ∈∈∈∈ L , and all s ∈∈∈∈ S ,  s !!!! f ⇒⇒⇒⇒ γ γγγs (f) = 0

• Optimal Segmentation: the family of the maximal connected 
components ≤ f , f ∈ L , partitions  f  into elements de γs(f),  and 
one cannot segment f  with less elements of  C.
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Properties of the  ConnectionsProperties of the  Connections

• Lattice of the Connections : The set of the  connections that 
contain the canonic sup-generating class S forms a complete 
lattice where

inf {CCCCi } = ∩∩∩∩CCCCi et       sup{CCCCi } = CCCC{∪∪∪∪CCCCi }

• Connected Dilations : Let C be  a connection and S ⊆C a sup-
generating class. If an extensive dilation δ preserves connection 
on S , it preserves it also on C .
– Ex: in P(E), if the (extensive) dilates of the points are 

connected, that of any connected component is connected too. 

• Corollary : The erosion and the opening adjoint to δ treat the 
connected components of any a∈ L independently of each other.
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• Firstly, the erosion X/Bλ suppresses the connected 
components of X that cannot contain a disc of radius λ;

• then the opening γrec(X ; Y) of marker Y = X/Bλ «re-builds»  
all the others.

• Firstly, the erosion X/Bλ suppresses the connected 
components of X that cannot contain a disc of radius λ;

• then the opening γrec(X ; Y) of marker Y = X/Bλ «re-builds»  
all the others.

Application: Filtering by Erosion-RecontructionApplication: Filtering by Erosion-Recontruction

a) Initial image b) Eroded of a)
by a disc

c) Reconstruction 
of  b) inside a)
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Application: Holes FillingApplication: Holes Filling

initial image
X

A = part of the edge 
that hits XC

reconstruction 
of  A inside XC

Comment : efficient algorithm, except for the particles that
hit the edges of the field.
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Connected OperatorsConnected Operators

Definition :
• An operator ψ : L→L is said to be connected when its 

restriction to D is extensive. The most useful of such operations 
are those which, in addition, are increasing for TE .

Properties when ϕ ϕ ϕ ϕ = 0 :
• All binary reconstruction increasing operations induce on L, via 

the cross sections, increasing connected operators on L .
• The properties to be strong filters, to constitute semi-groups, etc.. 

are also transmitted to the connected operators induced  on L.
• Note that a mapping may be anti-extensive on LE, and extensive 

on D (e.g.reconstruction openings). However, the reconstruction 
closings on LE are also closings on L .
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An Example of a Pyramid of Connected A.S.F.'sAn Example of a Pyramid of Connected A.S.F.'s

Initial Image

ASF of size 1

ASF of size 4

ASF of size 8

Flat zones connectivity, (i.e. ϕ ϕ ϕ ϕ = 0 ).
Each contour is preserved or suppressed, 
but never deformed : the initial partition
increases under the successive filterings,
which are a strong semi-group.
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Second Generation ConnectionSecond Generation Connection

We will now use a dilation δ to create a new connections C’ 
from a first one C (of associated opening γx ).

• Inverse Images : Let δ :L→L be an extensive dilation that 
preserves connection C (i.e. δ (C) ⊆ C). Then, the inverse image 
C ' = δ-1(C)  of C is still  a connection on L, which is richer than 
C, i.e. C’ ⊇C.

• Connected Opening : If, in addition, L is infinitely ∨-distributive, 
then the C-components of δ(a) are exactly the images of the CCCC’-
components of a. The opening νx of C’ is given by

ννννx(a)  = γγγγx δδδδ (a) ∧∧∧∧ a      when  x ≤ ≤ ≤ ≤ a    ;
ννννx(a)  = 0000 when not .
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Application : Search for Isolated ObjectsApplication : Search for Isolated Objects

a): Initial Image b) : SKIZ and dilate of a) by a
disc of radius 10.

Comment: One want to find the particles from more than 20 pixels apart. They
are the only connected componets to be identical in both CCCC and CCCC ’ connections ,
i.e. the particles whose dilates of size 10 miss  the SKIZ of the initial image.
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Application : 3-D Objects Extraction (I)Application : 3-D Objects Extraction (I)

Goal : Extract the osteocytes present in a sequence of 60 
sections from confocal microscopy

• Photographs a) and b) : sections 15 and 35 respectively ;
• Image c) : supremum M of the 60 sections.

a) b) c)
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Application : 3-D Objects Extraction (II)Application : 3-D Objects Extraction (II)

• d) : Threshold c) at level 60 ;  e) : Connected  opening of d) 

• f): Infinite geodesic dilation of the thresholded sequence 
(level 200) inside mask e)     - perpective display -

d) e) f)
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Another example:  Connections  in  a    
Time Sequence

Another example:  Connections  in  a    
Time Sequence

Part of the sequence

Representation of the ping-
pong ball in Space⊗⊗⊗⊗ Time

Connections obtained by cube
dilation of size 3 in Space⊗⊗⊗⊗ Time

(in grey, the clusters)
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Lattice of Equicontinuous FunctionsLattice of Equicontinuous Functions

• Definition : E is a (discrete or continuous) metric space. Choose a 
positive  function ϕ : R+ → R+ be which is continuous at the origin. 
A function g : E → T is said to be equicontinuous of module ϕ when 

 g(x) - g(y)  ≤ ϕ  ≤ ϕ  ≤ ϕ  ≤ ϕ [ d(x,y)] ( d = distance in E)

The class of these functions is denoted by Gϕ

• Gϕϕϕϕ Lattices:  For each ϕ , Gϕ turns out to be a totally distributive 
sub-lattice of TE. All its elements are finite, except possibly its two
extrema. 

• Convergence : In each Gϕ the convergences in Matheron sense and 
Hausdorff sense (when E is compact) coincide with the pointwise
convergence, which, in addition, is uniform.

( i.e. « gn → g  as n → ∞ »  just means « gn(x)→ g(x) , x∈ E » ).
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Examples of ModulesExamples of Modules

• Constant Functions : 
ϕ = 0 ;ϕ = 0 ;ϕ = 0 ;ϕ = 0 ;

• Functions with a bounded variation k :
∀ ∀ ∀ ∀ d :      ϕ ϕ ϕ ϕ (d) ≤≤≤≤ k

• Lipschitz Functions :
ϕ ϕ ϕ ϕ (d) ==== k .d

• Geodesic Lipschitz Functions :
d ≤≤≤≤ d0 ⇒   ϕ ⇒   ϕ ⇒   ϕ ⇒   ϕ (d) ==== k .d

• Constant Functions : 
ϕ = 0 ;ϕ = 0 ;ϕ = 0 ;ϕ = 0 ;

• Functions with a bounded variation k :
∀ ∀ ∀ ∀ d :      ϕ ϕ ϕ ϕ (d) ≤≤≤≤ k

• Lipschitz Functions :
ϕ ϕ ϕ ϕ (d) ==== k .d

• Geodesic Lipschitz Functions :
d ≤≤≤≤ d0 ⇒   ϕ ⇒   ϕ ⇒   ϕ ⇒   ϕ (d) ==== k .d

k

d0

ϕ ϕ ϕ ϕ 

ϕϕϕϕ
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Properties of Equicontinuous ClassesProperties of Equicontinuous Classes

• Every Gϕϕϕϕ :
- contains all constant functions ;
- is self-dual ( g ∈∈∈∈ Gϕϕϕϕ ⇔ ⇔ ⇔ ⇔ - g ∈∈∈∈ Gϕϕϕϕ ) ;
- is closed under addition by any constant.

• Dilations: Gϕ is closed under the usual dilations and erosions 
(Minkowski , geodesic), and all these operations are continuous ;

• Filters: hence Gϕ is also closed under all derived filters (openings, 
closings, ASF, etc..), which turn out to be continuous operations ; 

• Continuity is enlarged into  module preservation, a stronger notion, 
which is valid for both  continuous and digital cases . 
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• Definition: Given a module ϕ , with each pair ( A, g ) of the 
product space P(E) × Gϕ associate the restriction gA of g∈ Gϕ
to A, i.e. the function

gA(u) = g(u)        if  u ∈ Α∈ Α∈ Α∈ Α
gA(u) = 0             if  u ∉ Α∉ Α∉ Α∉ Α .

By so doing, we replace the indicator function of set A by  a 
(variable)  weight g which belongs to Gϕ . Hence gA turns out to 
be a weighted set. As the pair (A,g) spans P(E) × Gϕ , the gA’s
generate the setPϕ(E) .

• Lattice of the Weighted Sets : Set Pϕ(E) is a complete lattice 
for the usual ordering ≤ ; in this lattice, 

- the supremum 2222(gA)i of a family {(gA)i , i∈ I} is the 
smaller element of Gϕ which is larger than ∨∨∨∨(gA)i on ∪Ai .

- the infimum, simpler, is given by 3333(gA)i = (∧∧∧∧gi)∩Ai .

Weighted SetsWeighted Sets



J.Serra  Ecole des Mines de Paris  ( 1998 ) Connections  and Segmentation  24

Examples of Weighted SetsExamples of Weighted Sets

• First example : for ϕ = 0; the two sets 
are flat, but with different heights : 

their ϕ-sup is their flat envelope 
(continuous lines),

their ϕ -inf is just the intersection 
of the two functions (dark zone)

• Second example : ϕ is a straight line :
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The weighted approach extends directly to partitions. 
• Definition : A weighted partition x→ (gD)x is a  mapping  

E →Pϕ(E)  such that
(i)    ∀∀∀∀ x ∈ ∈ ∈ ∈ E ,          x ∈ ∈ ∈ ∈ D(x) 
(ii) ∀∀∀∀ (x, y) ∈ ∈ ∈ ∈ E,   either (gD)x = (gD)y or (gD)x ∧∧∧∧ (gD)y = 0

• Sub-mappings : Clearly, the sub-mappings 
- x→ D(x) is a usual partition, i.e. D ∈ ∈ ∈ ∈ D
- x→ f (x) = ∨∨∨∨{(gD)y , y ∈ Ε }(x) is a usual function of TE, 

so that a weighted partition  may be denoted by ∆ = ∆ = ∆ = ∆ = ( D, f ). 

• Function Representation : Every function f : E → T can be 
represented, in different ways, as a ∨∨∨∨{(gD)x , x ∈ Ε }. It suffices 
to partition f into zones on which f admits module ϕ (for 
example, on which f  is constant).

Weighted PartitionsWeighted Partitions
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• Theorem (J.Serra) : Denote by L the set of the weighted 
partitions. Then, the relation

∆∆∆∆ 4444 ∆∆∆∆'  ⇔⇔⇔⇔ { D≤ ≤ ≤ ≤ D'  in DDDD ,  and  f≤ ≤ ≤ ≤ f ' in TE }
defines an ordering on L to which  is associated a complete

lattice.

• Sup and Inf : In L, the supremum 5555∆i of  family {∆i} admits  
D = ∨∨∨∨Di for partition. Each class  D(x) of D, has for weight g 
the smaller ϕ-continuous function larger than ∨(gD)i on D(x). 
The L infimum 6666∆i is given, at each point x,   by ∧∧∧∧gDi(x)
restricted to ∩∩∩∩Di(x) ).

• Extrema : ∆∆∆∆max is the single class partition, weighted by m, and
∆∆∆∆min is the partition into all points of E, each of them being 
weighted by 0.

Lattice LLLL of the Weighted PartitionsLattice LLLL of the Weighted Partitions
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An Example of  Flat Weighted PartitionAn Example of  Flat Weighted Partition

• Partitions : for ϕ = 0, given function f  :        
- when  f(x) ≠ 0, every subset of the flat 
zone of f that contains  point x can serve as  
a D(x), with weight f(x);
- when f(x) = 0, class D(x) is reduced to {x}.

(Note that f admits a largest flat partition ∆)

• Ordering : the two largest  flat partition ∆
and ∆’ generated from the flat zones of f and  
f ’ are not comparable in L , although f > f’  
(but in TE !) 

Their inf ∆∆∆∆ 6666 ∆∆∆∆’ is given by two flat sub-zones 
of f ’ and 0 elsewhere.

f

ΕΕΕΕ

ΕΕΕΕ

f ’

Functions f and  f’
Projection of their 
infimum partition 

∆∆∆∆ 6666 ∆∆∆∆’
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An Example of 5555 and 6666 in LLLLAn Example of 5555 and 6666 in LLLL

g a ) Non comparable
weighted partitions 
∆ ∆ ∆ ∆ and ∆∆∆∆’

b ) function associated
with supremum ∆∆∆∆ 5555 ∆∆∆∆’

c ) function associated
with infimum ∆∆∆∆ 6666 ∆∆∆∆’

f

Comment : Here the weights are taken constant in each flat zone of  f 
and f’, i.e. ϕ ϕ ϕ ϕ = 0 . This generates two weighted partitions ∆  ∆  ∆  ∆  and ∆ ∆ ∆ ∆ ’.
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Cylinders  in LLLLCylinders  in LLLL

• Cylinders : With any weighted set gA ∈ Pϕ(E),  it is always 
possible to associate a weighted partition ∆A as follows

x →→→→ gA if  x ∈ Α∈ Α∈ Α∈ Α
x → → → → {x} if  x ∉ Α∉ Α∉ Α∉ Α .

∆A is composed of class gA plus a jumble of  points, all 
being weighted by 0. Such a partition is called a cylinder, in LLLL, 
of base A.

• Sup-generors : Every  weighted partition ∆ turns out to be the 5 5 5 5 
of all cylinders ∆Dx associated with each class (gD)x of ∆ . Hence 
the class of the cylinders is sup-generating.

• closure under 5555 : the supremum ∆A =5555∆Ai of family {∆Ai} of 
cylinders has for partition classes {∪∪∪∪Ai , plus all {x} ⊆ [∪∪∪∪Ai]c }. 
Hence ∆A is itself a cylinder.
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Connections on Weighted PartitionsConnections on Weighted Partitions

Suppose now that E is equipped with a connection C0 . If 
the bases Ci’s of cylinders ∆Ci are connected and if ∩∩∩∩Ci ≠ ∅∅∅∅ , 
then 5555∆Ci is  a cylinder with a connected basis. Now, such  
cylinders are  still sup-generating. Hence,

• Connection on LLLL : the cylinders ∆C with a connected basis C 
in E, generate a   connection C over L .

• Associated opening : Given a weighted partition ∆ = ∆ = ∆ = ∆ = ( D, f ) , 
the point opening γγγγx(∆∆∆∆ ) of connection C extracts the cylinder 
whose  base is the class D(x) of D covering point x, and 
weight the values of f  inside D(x) .

x
.

In LLLL , the connected opening 
at point  x is a cylinder.

E
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Typology for the Connections on FunctionsTypology for the Connections on Functions

Module ϕϕϕϕ Model for Gϕϕϕϕ Meaning for Function f

1)  ϕ = 0ϕ = 0ϕ = 0ϕ = 0 Constant functions

2) ϕ ϕ ϕ ϕ (d) ≤≤≤≤ k

3) d ≤≤≤≤ d0 ⇒⇒⇒⇒
ϕ ϕ ϕ ϕ (d) ==== k .dαααα

k

d0

ϕ ϕ ϕ ϕ 

ϕϕϕϕ

Lipschitz geodesic
functions

Functions whose
range of variation = k

Flat zones

Zones in which the
variation of  f is ≤  ≤  ≤  ≤  k , 
and jumps from
one zone to another

Zones in which the
variation of  f is smooth , 
but not from one zone
to another
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An Example of  Jump Connection in LLLLAn Example of  Jump Connection in LLLL

• Coming

0
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Jump Size

Weigted Partitions of Burner Image

"c:\wmmorph\born.dat"

a) b) c)

c) Jump of size 24 : 63 tiles

b) Jump of size 12 : 783 tiles

a) Initial image: gaz burner

d) Number of tiles versus jump values

d)
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Other Example of  Jump Connection in LLLLOther Example of  Jump Connection in LLLL

a) Initial image:
polished section 
of alumine grains

b) Jump connection of
size 12 :
- in dark, the point
connected components
- in white, each particle 
is the base of a cylinder

c) Skiz of the set of
the dark points of 
image b)
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An Example of  Smooth Connection in L L L L (I)An Example of  Smooth Connection in L L L L (I)

Comment : the two phases of the micrograph cannot be 
distinguished by means of jump connections.

a) Initial image:
rock electron      
micrograph

b) Jump connection
of size 15 .

c) Jump connection
of size 25 .
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An Example of  Smooth Connection in L L L L (II)An Example of  Smooth Connection in L L L L (II)

a) Initial image:
rock electron      
micrograph .

e) Filtering of Image 
d) which iyelds a 
correct segmentation 
of a) .

d) smooth connection
of slope 6 (in dark, 
union of all point
connected components).

Comment : The smooth connection differentiates correctly 
the two phases according to their roughnesses.
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Jump Connection on a Color ImageJump Connection on a Color Image

Methodology:A jump connection of range 14 for the luminance yields 94 
zones. The three color channels are averaged in each of the 94 regions. 
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