EQUICONTINUOUS RANDOM FUNCTIONS

Jean SERRA

Centre de Morphologie Mathématique Ecole des Mines de Paris

Upper Semi Continuous Functions (G. M atheron, 1969)

- The class F of the u.s.c. functions $f : E \to R$ is nothing but that of those closed sets C in $\mathcal{F}(E \otimes R)$ such that:
 - $C \supset \mathbf{E}_{-\infty}$,
 - $\forall x \in E, \forall t \in R : (x,t) \in C \implies \{x\} \otimes [\infty, t] \subset C.$
- This class is a compact family in 𝔅(E⊗R). Hence, the open sets in F are the parts of F whose elements f satisfy the two conditions :

 $X_{f}^{+}(G) = \sup \{ f(x), x \in G \} > b \text{ and } \inf \{ X_{f}^{+}(G), G \supset K \} < a ,$

as G spans the open sets of E and K its compact sets.

• A sequence f_n converges towards f in F iff it satisfies the two conditions:

i) for all $x \in E$, there exists a sequence $x_n \to x$ in E such that the sequence $f_n(x_n) \to f(x)$ in R;

ii) if a sequence x_{nk} converges towards x in E , then the sequence $f_{nk}(x_{nk})$ satisfies $\lim f_{nk}(x_{nk}) \le f(x)$.

U.S.C. Random Functions (G. Matheron, 1969)

• Equip F with the σ - algebra generated by its topology, *i.e.* by the events

 $X_{f}^{+}(G) = \sup \{ f(x), x \in G \} > b.$

- A Random u.s.c. function f is then defined by providing the Measurable Space (F, σ) with a probability P. Such probabilities do exist because F is compact.
- Just as a random variable is characterized by its distribution function, a Random Function $f \in (F, \sigma, P)$ is determined by the joint distributions

 $\Pr\{ \sup\{ f(x), x \in B_1 \} < \lambda_1 ; ..., \sup\{ f(x), x \in B_n \} < \lambda_n \}$

for n finite, B_i compact sets, and λ_n real numbers (*Choquet- Matheron theorem, interpreted here for Random Functions*).

Equicontinuous Functions (Reminder)

Modulus of Continuity φ

With any function $f \in \mathbb{R}^{E}$, (*i.e.* $f : E \to \mathbb{R}$), associate function $\phi : \mathbb{R}_{+} \to \mathbb{R}_{+}$ as follows :

 $\varphi(h) = \sup \left\{ \begin{array}{c|c} f(x) - f(y) \\ \end{array} \middle| \begin{array}{c} x, y \in E, \end{array} d(x,y) \le h \end{array} \right\} .$

Moreover, "f is uniformly continuous " \Leftrightarrow " $\lim_{\phi \to 0} = 0$ ". If so, then ϕ is called a *Modulus of Continuity*.

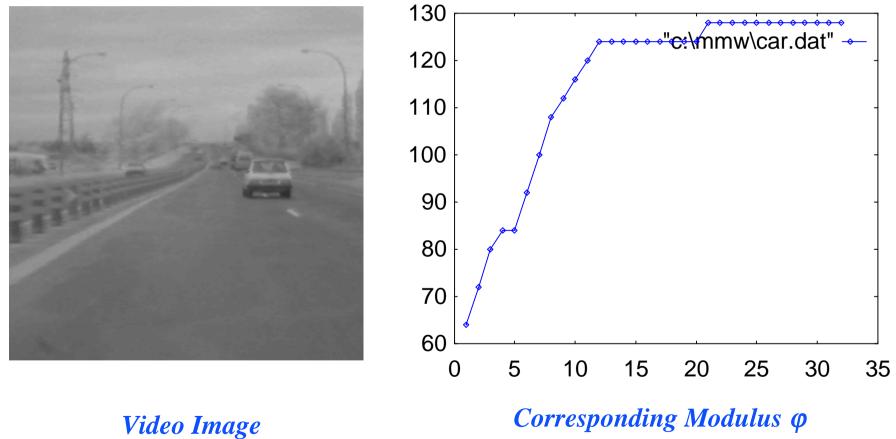
Equicontinuous Classes

Given φ , a function f is said to be φ - *continuous* when

 $|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})| \le \varphi[\mathbf{d}(\mathbf{x},\mathbf{y})] \quad \text{for all} \quad \mathbf{x}, \mathbf{y} \in \mathbf{E}$ (1)

The functions that satisfy Eq. (1) generate the so called φ - *continuous class*.

An Example of Modulus φ



(square metrics)

Worshop on Random Sets

Lattices $L_{\phi}\,$ of Equicontinuous Functions

• Theorem : For every modulus φ , class L_{φ} is a complete sub-lattice of R^{E}

More generally, replace R by a Lattice T equipped with a topology that

- makes T compact;

- closes the ordering on T (i.e. $x_i \rightarrow x$, $y_i \rightarrow y$, $x_i \le y_i \Rightarrow x \le y$) Lattice T is said to be Compact and Close Ordered (*in brief* : C.C.O.)

• **Theorem :** Let E be a metric space, T be a totally ordered CCO-lattice, and d_T be a distance on T such that

 $a \le x \le y \le b$ in $T \Rightarrow d_T(x,y) \le d_T(a,b)$

then the class L_{φ} of the φ - continuous functions $f: E \to T$ is a complete sub lattice of T^{E} .

• Corollary : The theorem extends to any product $\Pi \{T_i, i \in I\}$ of T type lattices.

Dilations on R^E functions Lattices

• In any lattice, the two basic operations are those which preserve either the supremum (namely the *dilations*) or the infimum (namely the *erosions*).

The dilations δ that map the functions lattice \mathbb{R}^{E} into itself admit a rather general form $(\delta f)(y) = \bigvee \{ g_{y}(z) + f(z), z \in E \}$ where each point $y \in E$ is associated with a *structuring function* g_{y} .

• In order to describe the variation of the g_y over the space, introduce the following Hausdorff type metrics :

Proposition: Let G be a family of numerical functions over a metric space E, i/ which admit a common finite upper bound ii/ whose cross sections $X_t(g) = \{y : g(y) \ge t\}$ $g \in G$ are compact for all $t \in \mathbb{R} \setminus \{-\infty\}$. If g_ρ stands for the dilate of g by a circular cylinder of radius ρ and height $k\rho$, then the mapping $h: G \otimes G \rightarrow \mathbb{R}_+$

 $h(g, g') = inf \{ \rho : g \le g'_{\rho}, g' \le g_{\rho} \}$ is a distance on \mathcal{G}

Dilations on L_{ϕ} **Lattices**

We now wonder about the image $\delta(L_{\phi})$ of sub lattice L_{ϕ} under dilation δ .

• **Theorem :** let $\delta : \mathbb{R}^E \to \mathbb{R}^E$ be a dilation whose structuring functions admit a modulus of continuity φ' i.e.

 $\begin{array}{ll} h(g_x,g_y) \leq \varphi' \left[d(x,y) \right] & x,y \in E \\ Then \ \delta maps \ L_{\varphi} \ into \ the \ sub \ lattice \ L_{(\varphi+k)\circ\varphi'} \ of \ the \ (\varphi+k)\circ\varphi' - \ continuous \\ functions. \end{array}$

• Particular cases :

- E is affine, and g_x is the translate of g_0 . Then $h(g_x, g_y) = d(x,y)$ and $(\phi + k) \circ \phi' = \phi$. Dilation δ preserves each sub lattice L_{ϕ} ;

- The g_x 's are flat of support K_x *i.e.* $g_y(y) = 0$ when $y \in K_y$, $g_y(y) = 0$ when not

Then $\delta \max L_{\varphi}$ into $L_{\varphi \circ \varphi'}$. In particular, if $\varphi' \leq I$, then δ preserves L_{φ} . This latter case occurs, for example, when δ is the restriction of a translation invariant operator to a rectangular mask **Topologies on** L_{ϕ} **Lattices (I)**

In the usual CCO lattices, when the mapping $X \to \forall X$ from $\mathcal{F}(T)$ into T is continuous, then $X \to \land X$ is u.s.c. only (*e.g.* closed sets in R, or u.s.c. functions $R \to R$). The double continuity is thus an exceptionally strong property, and the following criterion a corner stone :

• Criterion (from G.Matheron) : An algebraic lattice admits a necessarily unique CCO topology such that ∨ and ∧ are both continuous iff for all s and all t in T, s ≤ t, one can find two elements s' and t' with

 $s \notin M_{t'}$; $t \notin M^{s'}$; $M_{t'} \cup M^{s'} = T$, where $M_{t'} = \{ z : z \in T, z \leq t' \}$ and $M^{s'} = \{ z : z \in T, z \geq s' \}$.

Remarkably, the criterion demands no topological prerequisit, and treats both questions of existence and of unicity.

Owing to the above criterion , we may state

• theorem :Let L_{φ} be the lattice of the φ -continuous functions from E into R, (or more generally into a fully ordered CCO lattice T). Then, the unique topology that makes L_{φ} CCO, with continuous \lor and \land , is the topology of the pointwise convergence.

Topologies on L_{o} Lattices (II)

Proof: Let $f,g \in L_{\varphi}$, $f \neq g$. There exists at leat one $x \in E$ with (*for ex.*) the strict inequalities g(x) < a < f(x). Consider the two elements f_o and g_o of L_{φ}

 $\begin{array}{ll} f_{o}\left(y\right)=a-\phi\left[d(x,y)\right] & \text{and} & g_{o}(y)=a+\phi\left[d(x,y)\right] & \forall \ y\in E \\ \text{f is not a lower bound of } g_{0} \text{ since } f(x)>a, \text{ hence } f\notin M^{g}_{o} \text{ . Similarly, we} \\ \text{have } g\notin M_{fo} \text{ . Moreover, any function } s\in L_{\phi} \text{ is either } \leq g_{o} \text{ (if } s(x)\leq a), \text{ or} \\ \geq f_{o} \text{ (if } s(x)\leq a) \text{ .The criterion applies, and the topology is identified by} \\ \text{observing that } L_{\phi} \text{ belongs to both classes of the u.s.c. and l.s.c. functions } \blacksquare \end{array}$

• Corollary : the theorem remains true when T is replaced by any product $\Pi \{T_i, i \in I\}$ of T type lattices.

Continuity of the Increasing Operators

The consequences of the theorem on increasing mappings are considerable. In the "flat " case, for example, we have :

• **Theorem**: Let δ be the dilation by the (variable) φ' - continuous Structuring Element K. Then, for each modulus φ , the mapping δ from L_{φ} into $L_{\varphi \circ \varphi'}$ is continuous. The continuity extends to all finite sup's, inf's, and composition products of such dilations.

Similar results may be obtain for linear mappings. For example:

• **Proposition:** Let g(dh) be a measure such that $\int_E |g(dh)| \le 1$. Then the convolution by g maps each L_{ϕ} into itself, and is continous.

Consequently, all half residuals (*i.e.* the differences "identity minus mapping ") of the above increasing operators are continuous.

Random *\ \ \ \ Continuous Functions*

Given modulus ϕ , the lattice $L_\phi~$ is a compact sub-class of the family F of the u.s.c. functions from E into R.

• Therefore , the events

 $X_{f}^{+}(G) = \sup \{ f(x), x \in G \} > b$

that generate the σ -algebra on F admit a similar meaning in L_{ϕ} , and the compactness of L_{ϕ} ensures that there exist Probabilities on the Measurable Space (L_{ϕ} , σ).

- Moreover, we draw from the above theorems that, as soons as they admit a modulus of continuity, dilations, erosions as well as their finite sup's , inf 's , and composition products do preserve φ -continuous Random Functions, with possible changes of moduli φ .
- Note that the expression of Choquet Functional is left unchanged .

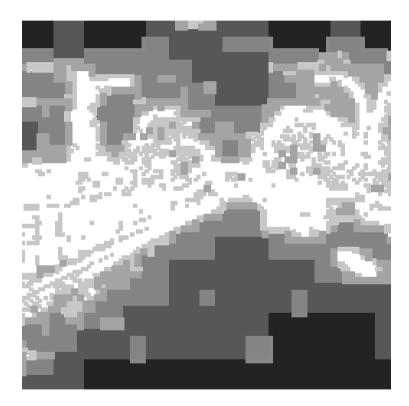
Application to sampling

- Given a digital image f,
 - what is the minimum number of values of f which suffices for estimating f everywhere with an accuracy ϕ_0 ,
 - and where must we locate the sampling points ?
- Consider f as a realization of a φ -continuous random function, and introduce the following local version of modulus φ:

 $\varphi_{x}(h) = E [sup \{ | f(x) - f(y) | y \in B_{x}(h) \}]$ (3)

- Let $h_x(\phi)$ be the largest inverse of $\phi_x(h)$, *i.e.* the value of the maximum disc centered at x and such that the variation, in the sense of Eq. (3) is $\leq \phi$. Since $\phi = \phi_0$ is fixed, $h_x(\phi) = h(x)$ becomes a function of x only.
- The goal comes back to construct a grid whose variable spacing fits with function h. We shall start from the four corners of the field.

Example of Sampling (I)



(1) Inverse modulus (car example) **Digitization of (1)** with a constant accuracy

Example of Sampling (II)

Initial Image (65 536 pixels) Sampled Image (15 892 pixels)