> Frontiers of Mathematical Morphology
> April 17-20, 2000
> Strasbourg, France

Viscous Lattices

Definition

Connections
geodesic Reconstruction
Application to watershed

By J. Serra

Ecole des Mines de Paris

Bibliography

- Initial Idea :
F.Meyer, La viscosité en ligne de partage des eaux. Note CMM 1994
- Applications :

1- Ph. Degrize, Reconstruction d'images IRM ; Analyse automatique d'images par Morphologie Mathématique. Phd Thesis, Université Paris 7, 1994 ;

2- C. Vachier, F. Meyer et R. Lamara : Segmentation d'image par simulation d'une inondation visqueuse. To be published in RFIA 2000 Paris ;

- Current Development :
J. Serra, Viscous Lattices Note CMM D01-2000.

Objectives (1)

Purpose : To swell the space so that the Lion be wedged in its cage .

Objectives (2)

- Method:

To generate viscous reconstruction, i.e. with a given meniscus.

- Means :

1- To build the convenient lattice Λ : it is called viscous, and generated by the dilates of the points by a given dilation δ (the viscosity) ;

2- To define connections on Λ and to use the associated connected openings.

- An example : Contour of the heart muscle.

Notation and Reminder

- Notation :
$E:$ an arbitrary set $; \Pi(E)$: the lattice of all subsets of E;
δ : dilation $\Pi(\mathrm{E}) \rightarrow \Pi(\mathrm{E})$, of adjoint erosion ∂. Dilation δ is determined by the images of the singletons $\left\{\int\right\}$ de $\Pi(E)$:

$$
\begin{equation*}
\delta(\mathbf{X})=\cap \delta(, ل), \ldots \mathbf{X}\} \quad \mathbf{X} \varepsilon \Pi(\mathbf{E}) \tag{1}
\end{equation*}
$$

$B=\{\delta(\downarrow), \downarrow \varepsilon E\}:$ class of the dilates of the singletons; $\gamma=\delta\lfloor\partial=$ opening adjoint to dilation δ.

- Reminder : The family $\Lambda=\{\delta(\mathrm{X}), \mathrm{X} \varepsilon \Pi(\mathrm{E})\}$ of the dilates of the elements of $\Pi(E)$ is also the image of $\Pi(E)$ under the opening $\gamma=\delta \partial$, adjoint to dilation δ.

Viscous Lattices

- Proposition 1 :

Set Λ has a structure of complete lattice for the ordering of the inclusion. In this lattice, the supremum coincides with the set union, although the infimum \wedge is the opening of the intersection by $\gamma=\delta \partial$

$$
\wedge\left\{\mathbf{X}_{i}, \mathrm{i} \varepsilon I\right\}=\gamma\left(\left\{\mathbf{X}_{i}, \text { idI }\right\}\right) \quad\left\{\mathbf{X}_{i}, \mathrm{i} \varepsilon I\right\} \varepsilon N(2)
$$

- The extreme elements of Λ are E and the empty set \varnothing.
- set Λ is said to be the viscous lattice of dilation δ.

Atoms et Sup-generators

- Sup-generators:

The class B of the singletons dilates is a sup-generator of lattice Λ.

- Atoms :

But the $\delta(\lrcorner)$ themselves are not atoms in general. However, when $\mathrm{E}=\nabla^{\mathrm{n}}$ or \wedge^{n}, and for δ invariant under translation, the elements of B are the translates of the transform $B=\delta(0)$ of the origin.

In such a case, and for B a compact set, the associated viscous lattice is atomic, of atoms the translates de \mathbf{B}.

A few Counter-performances (1)

- Proposition 2 :

The viscous lattice of dilation δ is generally neither distributive, nor co-prime, and does not admit unique complements.

- An example of the lack of distributivity:

A few Counter-performances (2)

- Complement :

A complement to $\mathrm{X} \varepsilon \Lambda$ is every set $\mathrm{Y} \varepsilon \Lambda$ such that

$$
\mathbf{Y} \quad \mathbf{X}^{\mathrm{c}} \quad \text { and } \quad \gamma(\mathbf{Y} \cup \mathbf{X})=\varnothing
$$

- An example :

- What is left :
is Galois involution between adjoint dilation and erosion, i.e $\delta \mathbf{Y}) \subseteq \mathbf{X} \quad(\mathbf{X}) \subseteq \mathbf{Y} \quad \mathbf{X}, \mathbf{Y} \varepsilon \Lambda$

Dilation and Erosion in Λ

- Links between a dilation viewed in Λ and in $\Pi(\mathrm{E})$:

Dilation		erosion
$\alpha \Pi(\mathrm{E}) \rightarrow \Pi(\mathrm{E})$	$\alpha^{1}: \Pi(\mathrm{E}) \rightarrow(\mathrm{E})$	
$\alpha: \Lambda \rightarrow \Lambda$	$\beta \Lambda \rightarrow \Lambda$	

Identity of α acting in $\Pi(E)$ or in Λ...

- Links between an erosion dilation viewed in Λ and in $\Pi(\mathrm{E})$:
$\left.\beta(\mathbf{X})=\cap\{\delta(\lrcorner), \delta(\downarrow) \subseteq \alpha^{1}(\mathbf{X})\right\}=\beta(\mathbf{X})=\delta \partial \alpha^{1}(\mathbf{X})$
When α and δ commute, then erosion β, in Λ, equals the opening by $\gamma=\delta$ ∂ of erosion α^{-1}, adjoint to dilatation α in $\Pi((\mathrm{E})$.

Connection (Reminder)

- Set case :

Every set family $\mathrm{X} \subseteq \Pi(\mathrm{E})$ that satisfies the 3 following axioms
i/ $\varnothing \varepsilon X$

$$
\text { ii/ }\lrcorner \varepsilon \mathrm{E} \Rightarrow\lrcorner\} \varepsilon X \quad \text { (class } X \text { is sup generating) }
$$

iii/ $\left\{X_{i}, i \varepsilon I\right\} \varepsilon X$ et $\cup X_{i} \neq \varnothing \quad \Rightarrow \cap X_{i} \varepsilon X \quad$ (class X is conditionally closed under union).

- Generalisation :

The definition of connectivity extends to any sup generating lattice, by replacing \varnothing by the zero of the lattice, and the set \cap and \cup by the sup et l'inf of the lattice. Axiom ii/ just means that class X is sup-generating.

First Connections on $\Lambda(1)$

- Definition :

Let Λ be a viscous lattice of dilation δ on $\Pi(E)$. A class X^{\prime} of Λ defines a connection on Λ when
i/ CEX
ii/ $\operatorname{LEE} E[-]_{8}$
iii/ $\left\{X_{i}, \mathbf{i} \varepsilon\right\} \in \mathbb{X}$ and $\wedge X_{i} \neq \not \subset X_{i} \varepsilon X$

- Proposition 3 :

A class $X \subseteq \Lambda$ is a connection on Λ. if it is the restriction to Λ of the union of a connection X on $\Pi(E)$, and of the image B of the singletons of $\Pi(E)$ under δ, i.e. if

$$
\mathrm{X}^{\prime}=(\mathrm{XA}) \sim \mathrm{B}=(\mathrm{X}(\mathrm{~B}) \cup \Lambda
$$

First Connections on $\Lambda(2)$

- An Example :

$X=$ Arcwise connection
$\Lambda=$ set of the dilates by the unit disc B.
The union of the three lobes belongs to both X and Λ, hence to X^{\prime}. However, the three lobes are disjoint in Λ because their erosions by B are disjoint in $\Pi(\mathrm{E})$.

If we want to get separated particles here (for connections on Λ), we have to take into account the status of connectivity (in $\Pi(\mathrm{E})$) before dilation by δ.

Second Connections on $\Lambda(1)$

- Theorem 1 :

Let X be a connection on $\Pi(E)$ and $\delta: \Pi(E) \rightarrow \Pi(E)$ be a dilation, of adjoint erosion ∂, which generates the viscous lattice Λ. Then the image $X^{\prime}=\delta(X)$ of connection X turns out to be a connection on Λ.

- Comments :
- these new connections on Λ, are sensibly more restrictive than those of prop. 4 .
- For example, the three lobes of the figure are now three disjoint connected components.

Second Connections on $\Lambda(2)$

- Generality of the theorem :

- We did not assume that the dilates of the elements de X are still X connected. For example, in ∇^{2}, with the usual arcwise connection, take for δ the dilation by a doublet of points from h apart. Then the left two discs of the figure form a connected set, although the group of the three discs is no longer connected

- However, if $\lrcorner \varepsilon \mathrm{E} \Rightarrow \delta\lrcorner\} \varepsilon \mathrm{X}$, we have $\left.\mathrm{X}^{\prime}=\delta(\mathrm{X}) \subseteq\right) \mathrm{X}$ and the elements of X^{\prime} are then connected in both lattices Λ and $\Pi(\mathrm{E})$: Dilation δ preserves connection X .

Geodesic Operators (1)

- Theorem 2 :

When dilation δ preserves connection X, then connection X^{\prime} induced on Λ, in the sense du theorem 1 , is also preserved by δ. In addition, if γ_{\lrcorner}et $\gamma_{\delta(\lrcorner)}^{\prime}$ stand for the elementary connected openings on $\Pi(E)$ and on Λ respectively, then

$$
\gamma_{\& \mu}=\delta \partial \gamma_{\omega}=\gamma_{\lrcorner} \delta \partial \quad \quad \underset{-E E}{ }
$$

- Comment :

Every X^{\prime}-particle is the opening by $\delta \partial$ of the corresponding X particle. That allows to extract the X^{\prime}-particles.

Alternatively, can we build directly geodesic dilations in Λ ?

Geodesic Operators (2)

- Proposition 4 :

Let dilation δ be extensive and preserving connection $X \subseteq \Pi((E)$. Given $A ; Z \varepsilon$ $\Pi((E)$, with $A \subseteq Z$ and X-connected, the conditional dilate

$$
\zeta(\mathbf{A})=\delta(\mathbf{A}) \wedge \mathbf{Z}
$$

is X^{\prime} - connected and included in Z.

- N. B. : This does not mean that the iterated versions of ζ tend to a X 'component of Z . Here is a counter-example in ∇^{2} :
$\mathrm{E}:=$ square D of side a and of centre y ;
$\mathrm{B}(y):=$ disc of diameter $<$ a centred in y
Dilation $:=\delta(\lrcorner)=\{ \lrcorner\} \quad\lrcorner \varepsilon \mathrm{D} / y ; \quad \delta(y)=\mathrm{B}(y)$

Geodesic Operators (3)

- Definition:

Dilation δ is said to be completely extensive when for any point $\downarrow \varepsilon E(E$ topological space $)$ and for any compact set $K \subseteq E$, there exists an integer n such that the $n^{\text {th }}$ iteration of $\delta(\mathbb{\perp})$ covers K.

- Proposition 5 :

When dilation δ is completely extensive, then the X^{\prime}-connected component Z of Λ marked by $A \varepsilon X^{\prime}(\Lambda)$, if it can be covered by a compact set Z_{0} of $\Pi(E)$, is equal to

$$
\mathbf{Z}=\zeta^{(\mathbf{n})}(\mathbf{A})
$$

for some integer n.

An Example of Binary Geodesy (1)

a)

b)

c)

Binary example : in white, marker A ; in black, complement of mask Z; dilation δ is the Minkowski addition by the disc of radius r :
a) step of reconstruction for $\mathrm{r}=15$;
b) reconstruction for $\mathrm{r}=27$;
c) maximum reconstruction, corresponding to $\mathrm{r}=17$.

An Example of Binary Geodesy (2)

a)

b)

c)

Binary example (followed) :
a) maximum reconstruction from the edges of the field
b) partition of Z into two X -connected components for $\delta_{\text {max }}$
c) corresponding median element .

An Example of Numerical Geodesy (1)

a)

b)

c)

Numerical example :
a) positron image of the heart muscle (copyright CEA-ARMINES) ;
b) Watershed line of the gradient of fig.a
c) optimum reconstruction of the X '-components internal to zone b .

An Example of Numerical Geodesy (2)

a)

b)

c)

Numerical example (followed) :
a) external surface of maximum viscosity ;
b) external and internal contours ;
c) median element between the two contours.

