Course "Physics and Mechanics of Random Media"

École des Mines de Paris
One-week course November 19-23, 2018
60 Bd Saint-Michel, Paris
http://cmm.ensmp.fr/ESPRM/

Keywords: random structures, variability, simulations, homogenization, upscaling, elasticity, fracture statistics, reliability, computer aided design of materials

Lecturers:
Benoit Noetinger, Institut Français de Pétrole, 78 Rueil Malmaison
Yves-Patrick Pellegrini, CEA DAM, Bruyères-le-Châtel, Arpajon.
Christian Lantuéjoul, Centre de Géosciences, École des Mines de Paris, Fontainebleau.
François Willot, Centre de Morphologie Mathématique, École des Mines de Paris, Fontainebleau
Bruno Figliuzzi, Centre de Morphologie Mathématique, École des Mines de Paris, Fontainebleau
Jesús Angulo, Centre de Morphologie Mathématique, École des Mines de Paris, Fontainebleau
Anne Françoise Gourgues, Centre des Matériaux P. M. Fourt, École des Mines de Paris, Évry

Organiser: François Willot
Email: francois.willot@mines-paristech.fr
Phone: +33 1 64 69 48 07

Registration: Anne-Marie De Castro
Email: anne-marie-de_castro@mines-paristech.fr

Location: École des Mines de Paris (60 Bd Saint-Michel, Paris)
Participants: 30 maximum

Goal:
Many solid media and materials (composites, granular media, metals, biomaterials, porous media, soils, rocks, etc.) encountered in materials sciences, geophysics, environmental sciences, energetics, hydrogeology,... display microstructures and structures of several length scales, showing often a non-deterministic disorder. A better understanding and prediction of the resulting multiscale and random nature of materials’ mesoscopic and/or macroscopic properties requires a modeling approach based on a combination of probabilistic concepts with methods of physics and mechanics. The course, which aims to provide an introduction to this subject, will be given in a self-contained series of lectures and training sessions on computers.

First, motivated by a review of advanced experimental techniques for the microstructure
description, and by typical results involving fluctuations present in plasticity, damage, fracture,
and flows phenomena in porous media, basic tools of applied probability and random processes
are recalled. Then, probabilistic tools for the description random media and models together with
their simulation are introduced. At the second stage, physics and mechanics of random media are
presented from the standpoint of approximate solutions of partial differential equations with
random coefficients. For example, linear electrostatics problems in random media are studied by
means of perturbation expansion of the random electric and displacement fields, while bounds on
the effective permittivity and of elastic moduli are derived from variational principles. This
approach of homogenization, which can be applied to other physical properties like the
composition of permeability, or of the thermal conductivity, is illustrated by third order bounds.

The third area of focus concerns the use of numerical techniques (in particular FFT-based
computation), to provide an estimation of homogenized properties of random media from Monte
Carlo type simulations. Bounds and numerical techniques are then extended to non linear
behaviours, like the plasticity of polycrystals. Given the importance of reliability problems in a
multitude of engineering applications, several fracture statistics models (brittle, ductile, fatigue)
are worked out from a probabilistic approach.

Structure of the course: Five full days in a single week. Lectures (70%) and practical
training on computers (30%).

Course contents

Day 1 (Monday November 19): Introduction and basic concepts:

9h30-9h35 General introduction (F. Willot) (Room L224)
9h35-10h30 Introduction to random media and homogenization : from images to physical properties (F.
Willot) (Room L224)
10h30-11h Break
11h- 12h30 Introduction to applied probability and probabilistic models (B. Figliuzzi) (Room L224)

14h-15h Introduction to the simulation of random variables (C. Lantuejoul) (Room L224)
15h-15h30 Break
15h30-17h30 Morphological characterization of random sets and of random functions: size, repartition,
connectivity (B. Figliuzzi) (Room L224)

Day 2 (Tuesday November 20): Models and simulation of random media

9h-10h Examples of models and simulation of point processes (C. Lantuejoul) (Room L224)
10h-10h30 Examples of models of random sets (Boolean models) (J. Angulo) (Room L224)
10h30-11h Break
11h-12h30 Examples of models of random sets (Boolean model) (J. Angulo) (Room L224)

14h-15h Gaussian random functions: properties and (conditional) simulations (C. Lantuejoul) (Room
L224)
15h-18h Training session on morphological characterization of images and on simulations with the
Day 3 (Wednesday November 21): Homogenization of random media (linear properties): bounds and numerical techniques

9h-10h Electrostatics of random media: perturbation expansion of the random electrical and displacement fields; estimation of the effective permittivity, statistical approach of the Representative Volume Element (F. Willot) (Room L224)
10h-10h40 Classical and Hashin-Shtrikman variational principles; derivation of bounds of effective properties (F. Willot) (Room L224)
10h40-11h Break
11h-11h45 Third order bounds of the dielectric permittivity and of the elastic moduli of some models of random media. Examples of optimal microstructures (F. Willot) (Room L224)
11h45-12h45 Training session on the calculation of bounds of linear properties of random media (F. Willot) (Room L027)

14h-15h Numerical homogenization of random media, Representative Volume Element (F. Willot) (Room L224)
15h-15h30 Break
15h30-17h Training session on heat conduction with Fast Fourier transform (FFT) computations (F. Willot) (Room L027)

Day 4 (Thursday November 22): Transport in random media. Fracture Statistics, numerical techniques

9h-10h30 Material variability of mechanical properties at different scales (A.-F. Gourgues-Lorenzon) (Room L224)
10h30-10h45 Break
10h45-12h15 Material variability of mechanical properties at different scales (A.-F. Gourgues-Lorenzon) (Room L224)

14h-16h Resonances in the properties of composite media (Y.-P. Pellegrini) (Room L224)
16h-16h30 Break
16h30-18h Training session on resonances (Y.-P. Pellegrini) (Room L027)

Day 5 (Friday November 23): Homogenization of random media (nonlinear properties, resonances)

9h-10h45 Scales and physical properties in porous media (B. Noetinger) (Room L224)
10h45-11h15 Break
11h15-12h Variational methods for non linear composites (Y.-P. Pellegrini) (Room L224)

14h-15h30 Variational methods for non linear composites (Y.-P. Pellegrini) (Room L224)
15h30-15h45 Break
15h45-17h30 Variational methods for non linear composites (Y.-P. Pellegrini) (Room L224)
17h30-17h45 Conclusion

Readings

G. Matheron, Eléments pour une théorie des milieux poreux, Masson, (1967)

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models - Contributions to structural reliability and stochastic spectral methods. Habilitation à diriger des recherches, Université Blaise Pascal, Clermont-Ferrand (2007)

Prerequisites: Basic knowledge in probability theory, physics and mechanics of solids.

Examination: The students prepare a written project from data processed during the training sessions. The project is submitted 3 weeks after the course